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Abstract  

The optimized design of composite 

structures requires solving simultaneously both 

structural and manufacturing problems. It is a 

difficult task since the objective functions do not 

have closed form solutions and have multiple 

local optima that calls for a global search. This 

paper improves a global search based on 

several restarts of the Nelder-Mead method, 

called “Globalized Bounded Nelder-Mead” 

[GBNM] method [1]. Two issues are addressed 

here: first, the restart procedure is improved by 

using a one-dimensional adaptive probability 

function, and second, nonlinear constraints are 

included by projecting the infeasible points onto 

the nonlinear constraints. The improved 

procedure is more efficient in terms of 

computational time and probability of finding 

the global minimum. The improved GBNM is 

applied to the simultaneous structural and 

manufacturing design of a Z-shaped composite 

bracket. Result confirms the proposed approach 

is more efficient than an evolutionary algorithm 

in the simultaneous optimization of composite 

design. 
 

 

1 Introduction  

Composite materials open a new window in 

engineering by providing excellent mechanical 

properties. However, this feature is accompanied by 

the complexity of the design problem, especially 

when the manufacturing aspects are involved in the 

structural design. Among difficulties involved in this 

field is multiplicity of the local solutions that calls 

for a global optimization.  

High computational cost is the main drawback 

to a global optimization. Several research papers are 

devoted to speeding up a global search by 

embedding an efficient local algorithm into a global 

one. One of these attempts by Luersen et al. [1] is 

devoted to combine the Nelder-Mead [N-M] method 

[2] to a random search.  

The local-global search proposed by Luersen is 

called Globalized Bounded Nelder-Mead [GBNM] 

method. GBNM repeatedly restarts a local search 

from new points using a probability function. The 

probability function keeps a memory of past local 

searches and forces the algorithm to restart the 

search from regions far from already-known 

solutions.  

It is shown that the restart procedure used by 

Luersen is computationally time consuming and is 

not always successful in finding the optimum 

solution. In this paper, a new restart procedure is 

introduced to improve the probability of finding the 

global minimum and to reduce the computational 

time. In Addition, a backtracking procedure is 

proposed to incorporate nonlinear constraints into 

the design problem. 

This paper is divided into two main parts: a) 

improvement and test of the optimization procedure; 

b) application of the improved method to 

simultaneous structural and manufacturing 

optimization of a Z-shaped composite bracket.  

 

2 Optimization Procedure  

A global search can be performed by 

repeatedly restarting a local optimization from 

different initial points. To avoid finding the same 

local optima, new initial points should not be close 

to the previous ones. The restart procedure used for 

this purpose gives points far from previous local 

optima and previous initial points more probability 

to be selected as initial points for the next local 

search. The restart procedure is shown in Fig. 1. 

The following sections propose two 

improvements  to  the  Luersen’s  GBNM.  The  first  
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Fig. 1. Restart and convergence tests linking in GBNM 

 

deals with the restart procedure in section 2.1. The 

second, described in 2.2, addresses the issue of how 

to include nonlinear constraints in the optimization 

algorithm. 

2.1 Improved Restart Procedure   

Luersen used a Multi-Dimensional Probability 

[MDP] density to assign the sampling probability of 

a point. It randomly selects Nr points and calculates 

the probability function by MDP. The point with 

highest probability value is used as an initial point 

for the next local search. The probability distribution 

achieved by this procedure is not equivalent to a 

normal distribution. It is strongly dependent on the 

number of points (Nr) and is independent of the 

probability density function. Luersen restart is 

computationally expensive because of the 

computational time needed for MDP. 

Here, we propose, an adaptive probability 

density called the Variable Variance Probability 

[VVP]. The new probability function is based on the 

minimum distance to the points already sampled and 

represented as: 
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where, )(xφ  is the sampling probability of point x , 

n is the number of design variables, xi, i=1,…, m are 

already-known solutions and previous initial points.  

di is the non-dimensional distance between 

point x and point xi. The variance of the normal 

probability density is updated in each restart 

by
1)3( −= n mσ . It gradually decreases when the 

number of sampled points is increased.  

The VVP restart also uses a selection 

procedure different than that of Luersen restart. In 

new selection procedure, Nr points are randomly 

selected to create a selection pool, which is a set of 

points whereby each has a number of copies 

proportional to its probability value. A new point is 

randomly selected from this pool.  

2.2 Non-linear Constraints  

N-M method is originally introduced for 

unconstrained optimization, but the variables in an 

engineering problem are usually constrained not 

only by upper and lower bounds on variables (i.e. 

box constraints) but also by nonlinear constraints. 

Initialize a random 

Polyhedron with size “a” 

Find a solution by N-M 

local optimizer 
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GBNM uses a projection procedure on the box 

constrained variables. Projection of variables is 

mathematically specified by: 
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GBNM, as used by Luersen, can not deal with 

nonlinear constraints; however, the variables in a 

composite optimization problem are often 

constrained by nonlinear functions, e.g. strength 

constraints. Identical to the projection of box-

constrained variables, a projection procedure is used 

for nonlinear constraints. The projection of nonlinear 

constraint includes a backtracking procedure 

illustrated in pseudo code in Fig 2. This procedure 

shifts the infeasible point toward the original 

feasible one, until it reaches the boundary of the 

feasible region. Thus, it guarantees the feasibility of 

the final solution. 

 

Input α, n, xnew, xf  

If xnew is feasible 

 Return xnew; 

Set i=0 

Repeat 

 Set xnew=xf +α(xnew-xf) 

 Set i=i+1; 

Until ( i>n) or (xnew is feasible) 

If i>n  

 Set xnew=xf 

Return xnew 

Fig. 2.  Backtracking procedure projects an 

infeasible point onto the nonlinear constraints 

 

2.3 Mathematical Test Functions  

Three mathematical test functions are used in 

this section to assess the improvement suggested in 

previous sections. The first is Griewank’s test 

function [1], with the global minimum of -1 and 

several local minima. 
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Next is Ackley’s test function [8], with the global 

minimum of -21.80 and several local minima. 
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The last is a combination of six-hump camelback [1] 

test function, with the global minimum of -6.18 and 

6
6
 local minima. 

 

 
Fig. 3. Griewank’s test function (A1) with two design 

variables 

 

 
Fig. 4. Ackley’s test function (A2) with two design 

variables 

 

 
Fig. 5. Six-hump camelback test function (cb(x)) 

with two design variables 
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Figs. 3 to 5 show the test functions in a two 

dimensional design space. However, to test the 

optimization procedure, these functions are 

optimized with 12 design variables. 

2.4 Optimization Set up 

The control parameters in N-M optimization 

procedure are set to be 1, 2, 0.5, and 0.9, 

respectively for reflection, expansion, contraction, 

and shrink coefficients [2]. The N-M method is 

terminated when the simplex is small or flat, or 

when the maximum number of iterations is reached. 

A simplex is small when: 
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where, k is the number of iterations, subscripts “u”, 

and “l” represent the upper and lower bound on 

variables xi. 1ε is a predetermined small number. 

Similarly, the simplex is called flat when: 

2|| ε≤− LH ff  (9) 

where, fH and fL are the highest and lowest function 

values at the current simplex and 2ε is a given small 

number.  

The N-M’s initial simplex is a polyhedron with 

the edge size of 20% of the design space. The small-

test and large-test in Fig. 1 restart the N-M method 

from the best point of the current simplex with a 

polyhedron of size 2% and 10% of the domain size. 

Nr in selection procedure is set to 10, and α and n in 

the backtracking procedure are set to be 0.9 and 10, 

respectively. A genetic algorithm with the 

population size of 20 and crossover and mutation 

fraction of 0.8 and 0.01 is used for comparison. 

2.5 Numerical Results 

Three test functions described in section 2.3 

with 12 variables are minimized using GBNM with 

random restart, Luersen restart, and VVP restart. 

The optimization is conducted for 1000, 5000, and 

10000 iterations. Results are compared to those 

obtained by the genetic algorithm. 

Fig. 6 compares the probability of finding the 

global minimum by each algorithm. The figure 

shows the average value of 100 runs for three test 

functions. Within 1000 iterations, all restart 

procedures perform almost similarly. But, when the 

number of iterations is increased, the difference in 

performance is noticeable. VVP restart shows more 

probability to find the global minimum with the 

same number of iterations. 
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Fig. 6. Average probability of finding the global 

solution in 100 runs for three test functions 

 

Fig. 7 plots the average runtime for each 

algorithm on the three test functions. It shows that 

Luersen restart is about 5 to 10 times slower than the 

random and the VVP restarts. Furthermore, 

computational time of the VVP and random restarts 

increases linearly with the number of iterations, 

although time needed for Luersen restart is increased 

exponentially.  
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Fig. 7. Average computational time of GBNM with 

different restart procedures and GA 

 

A GA is applied to all the test functions with 

the same number of function analyses. In all cases, 

GBNM finds a better solution compare to the GA, 

see Fig. 6. The computational time is not valid for 

comparison, because the two optimization methods 

have different operators. In practical problems, the 



 

5  

 IMPROVED GLOBALIZED NELDER-MEAD METHOD FOR 

OPTIMIZATION OF A COMPOSITE BRACKET

computational time is strongly related to the number 

of function analyses. 

To test the nonlinear constraint handling 

procedure, two hyper-spheres are added as 

constraints to the third test function (A3). Points 

within the two hyper-spheres are feasible. The 

GBNM with VVP restart and backtracking 

procedure is applied to this test function with two 

and 12 variables. With two variables, all the local 

minima found within 1000 iterations. With 12 

design variables, the constrained problem is more 

challenging since the number of local optima is 

increased from 6
6
 to 9

6
. But the solution found is 

feasible and sufficiently close to the global one (i.e 

the minimum found is -4.83 compare to the global 

minimum of -5.45). The results are not compared 

with GA or GBNM with Luersen restart because 

neither of these algorithms is able to directly work 

with nonlinear constraints. 

It is shown that GBNM can generally find a 

better solution than an evolutionary optimizer like a 

GA. Among three restart procedures, VVP restart is 

faster and it can find a better minimum for a general 

multimodal function. With the backtracking 

procedure, GBNM can also deal with nonlinear 

constrained problems. 

3. Composite Design Problem 

Finding the optimum structural design of 

composite parts is a difficult task due to the high 

degree of freedom in tailoring material properties 

and shape design. A variety of optimization 

methods, from simple mathematical methods, such 

as a linear programming, to combinations of 

computationally expensive methods, such as GA and 

topology optimization, has been used for this 

purpose. The GA is among the most popular ones in 

this field [6] because of capability of global 

optimization and independency to gradient 

information. 

The optimum design of a composite part is a 

trade-off between structural and manufacturing 

aspects. Composite designers usually simplify the 

problem by separating the two parts [7] and 

performing the process tuning after the structural 

design. But, there are several researches [7-9] 

confirming the approach to the design and 

optimization of composite materials must be 

multidisciplinary. Such an approach, called 

simultaneous optimization, is studied in this paper.  

Simultaneous optimization is more complex 

than the separate design, because it requires taking 

into account a large number of variables and local 

minima. Figs. 8 to 10 show the structural and 

manufacturing objectives of a two-layer rectangular 

plate made of laminated composite materials. 

Maximum structural objective (Fig. 8) corresponds 

to the maximum strength. Maximum manufacturing 

 

 
Fig. 8. Structural objective of two-layer laminated 

composite plate 

 
Fig. 9. Manufacturing objective of two-layer 

laminated composite plate 

 

 
Fig. 10. Simultaneous structural and manufacturing 

objective of two-layer laminated composite plate 
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Table 1. Structural, geometrical, and manufacturing design variables, objectives, and constraints 

 
 

Structural 

objectives/constraints 
 

Manufacturing 

objectives/constraints 

Design 

variable 
 

min: W Max: R mmy 1≤δ  
D ≥2  

o5.0|| ≤∆θ  ||:min θ∆  

4,...,1=iiθ   ○
a 

●
b 

● ●  ● ● 

E  ● ● ● ●  ● ● 

S  ● ● ● ○  ● ● 

R  ● ● ● ●    

  a: ○= Indirect or weak interconnection;  b: ●=Direct and strong coupling; 

 

objective (Fig. 9) corresponds to the minimum 

warpage and maximum permeability. The 

simultaneous objective function illustrated in Fig. 10 

shows that the best simultaneous design (i.e. 

maximum objective value) is neither the best 

manufacturing nor the best structural design, but it is 

a trade-off that lies between them. 

There are only a few papers working on 

simultaneous optimization of composite materials, 

and most of them use genetic algorithm [8-9], 

despite its low convergence rate and inherently high 

computational cost. Section 2 has shown that the 

GBNM is generally faster than an evolutionary 

algorithm for small number of function analyses. In 

this section the improved GBNM, described in 

preceding sections, is used for simultaneous 

optimization of a composite bracket. 

3.1 Composite Bracket Design Problem 

The Z-shaped composite bracket shown in Fig. 

11 is made of 16 plies balanced symmetric laminate 

of graphite/epoxy (AS4/8552) with fiber orientation 

of s]///[ 4321 θθθθ ±±±± . The optimization 

problem is to find the optimum value of the 

objective functions shown in the first row of the 

Table 1. This table also shows the strong/weak effect 

of the design variables on the objectives by a 

solid/non-solid circle in the corresponding cell. 

   

 
Fig. 11. Geometrical variables and applied loads on 

the composite bracket 

The problem has nonlinear constraints because it 

should not fail or delaminate anywhere within a 

safety factor of 1.5 and 2, respectively. 

Delamination is calculated in the curved regions 

where the angle shape causes high interlaminar 

normal stresses. The vertical deflection of less than 

1mm and the spring-in of less than 0.5° are strictly 

required for an acceptable design. 

3.2 Problem Simulation 

To evaluate the objective function, an 

appropriate processing and structural simulation is 

required. A semi-analytical model is developed in 

MATLAB
©
 for quick evaluation of the objectives 

and constraints.  

Objectives of the coupled problem include: 

failure index, vertical deflection, and spring-in. 

Failure index (R) is calculated by first ply failure in 

classical lamination theory and Hashin stress 

criterion [10]. Vertical deflection is calculated by a 

numerical integration and energy method [11]. 

Finally, spring-in, which is the angular deformation 

of a part after demoulding, is a function of cure 

shrinkage and thermal expansion, and is given by: 
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where, θ is angle of the bracket, θ∆ is spring-

in, T∆ is temperature change which is the difference 

between the cure temperature and room temperature. 

φ and α are coefficients of shrinkage and thermal 

expansion, subscripts “l” and “t” respectively stand 

for longitudinal and through thickness direction.  

Delamination is a critical mode of failure in 

composite materials, and it is due to the interlaminar 

stresses. In a flat plate, interlaminar stresses are 

created only by the free-edge effect [12], but in a 

curved part, the 3D stress field also creates 

significant interlaminar stresses. Here, delamination 

due to free-edge effect is calculated based on 

 

N1=500 N/m 

N3=100 N/m 

M1=50 N.m/m 

τ12=300  N/m 
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Fig. 12. Approximate distribution of interlaminar 

normal stress due to free-edge effect [12] 

 

Pagano’s model [12]. In this model the interlaminar 

normal stress is estimated as shown in Fig. 12. 

Interlaminar normal stresses created by the 

angle-shape effect are shown in Fig. 13. Sequentially 

solving the equilibrium equations for all layers, 

starting form the innermost layer results in 

interlaminar normal stress between layers n and 

n+1: 
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where, ti shows the thickness of i
th

 layer, and R is the 

inner radius of the curved part. If off-axis stresses 

change along the curve, Eq. (11) would be valid only 

for a differential angle θd . 

 

 
Fig. 13. Normal stresses in an angle shaped part 

Interlaminar shear stresses are of minor 

importance with respect to interlaminar normal 

stresses, thus an approximation of shear stress in a 

prismatic member under a transverse load is used. 

The semi-analytical models of the first ply 

failure, delamination, deflection, and spring-in will 

be used during the optimization process in the next 

section. 

3.3 Numerical Results 

The improved GBNM is applied to the simultaneous 

structural and manufacturing design of the bracket. 

The following weighted summation of the objectives 

is used as a cost function to be minimized:  
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(12) 

where R and D are delamination and load factor. Sr 

is the shoulder length after applying the fillet. δ is 

the vertical deflection in meters. θ∆ is the spring-in 

expressed in degrees. α an β are two dimensionless 

factors defining the relative importance of structural 

and processing objectives. The optimum found 

by 1=α and 0=β  only considers the structural 

objectives and constraints, thus called the structure-

only design. In contrast the case with 

0=α and 1=β  is the manufacturing-only design. 

Optimization with 1== βα  is called a 

simultaneous design. Here, α and β are restricted to 

0 and 1, but in general, a designer can set them to 

any real value by considering the relative importance 

of structural and manufacturing design.  

 

 

                          
Structural-only       Simultaneous        Manufacturing-only 

Fig. 14. Optimum geometry of the bracket and fiber 

orientation of the laminate 
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Table 2. Optimum design of the composite bracket obtained by improved GBNM after 5,000 iterations 

  Structure-Only Simultaneous Mfg-Only 

Fiber Orientation  [±5/±45/±60/±60]s [10/04/58]s [08]s 

E (mm) 21 10 6 

S (mm) 20 20 50 Geometry 

R (mm) 8 7 12 

Weight (gr) 6.83 6.91 9.34 

Deflection (mm) -0.98 -0.24 0.141 

Load Factor (R) 2.17 1.74 1.55 

Structural 

Objectives/Constraints  

Delamination Factor 12 23 40 

Mfg. Obj./Cons. Spring-in -0.27 -0.014 -0.005 

 

Since the problem includes variables of 

different kinds and scales, the variables are 

normalized to their design domain. The stopping 

criteria are set to be one percent of the smallest 

discrete portion of the design domain for the small 

simplex and 10
-4

 for a flat simplex. The optimization 

procedure is performed up to 5000 iterations. The 

optimum point obtained in continuous optimization 

process is rounded off toward the near discrete 

value. Table 2 and Fig. 14 show the best solutions to 

the structural-only, manufacturing-only, and 

simultaneous design problem. 

Table 2 shows that the simultaneous design is a 

trade-off between the structure-only and the 

manufacturing-only design. The geometry, fiber 

orientation, and the performance criteria of the 

simultaneous design are a trade-off between the two 

other designs. The simultaneous approach obtains a 

solution that is 18% better than the structural-only 

design in manufacturing aspect and it losses only 

1.18% of structural performance.  

The genetic algorithm needs a penalty function 

and its performance depends on the appropriate 

selection of penalty factor. Here, a GA with different 

penalty functions is used, and the best result 

obtained is compared with the improved GBNM. 

After 2000 function analyses, solution by the 

improved GBNM is 17% better than GA. The 

difference is reduced to 10% after 5000 function 

analyses, but still GBNM finds a better design. 

Table 2 shows only the best solution, although 

there are around 50 other local solutions found 

during the optimization process that a designer can 

select from. In this respect, this optimization 

procedure is comparable to an evolutionary 

procedure that provides a family of optimal solutions 

instead of just one specific solution. This feature is 

important, especially for multi-objective 

optimization. 

The composite bracket is optimized for 

structural, manufacturing, and simultaneous 

objectives. The result attests to the necessity of the 

simultaneous approach for composite material 

design. It also confirms that for small of number of 

function analyses the improved GBNM is more 

efficient than a common evolutionary algorithm, 

both in terms of time and the optimal solution found. 

 

4. Conclusion 

A local-global search based on several restarts of the 

N-M local optimizer is introduced. The VVP restart 

is presented to improve the performance of this 

local-global search. Different mathematical 

functions are used to show that the VVP restart 

generally performs better than Luersen and random 

restarts and even an evolutionary algorithm like GA. 

The computational cost of VVP restart is much less 

than that of Luersen restart.  A backtracking 

procedure is also presented and tested to incorporate 

nonlinear constraints into the design problem. The 

resulting algorithm can work on a problem with 

nonlinear constraints. It is simple to use and is 

capable of being terminated at any time. The 

numerical results show that it is generally faster than 

an evolutionary algorithm for a small number of 

function analyses. Finally, it provides a family of 

solutions (local optima) instead of just one specific 

solution.  

The developed optimization procedure is 

applied to simultaneous structural and 

manufacturing optimization of a Z-shaped composite 

bracket and compared with genetic algorithm. The 

observed trade-off between structural and 

manufacturing optimum designs confirms the use of 

a simultaneous approach in this field. The proposed 

procedure performed better than an evolutionary 

algorithm on this type of problem by providing a 

better solution with the same number of function 

analyses. 
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