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Abstract  

A new design method of functional fiber 
reinforced plastics (FRP) material which imitates 
the micro structure of bone or shell in the natural 
world is proposed in this work. The material has 
local anisotropy or variable stiffness property 
induced by distributed short fibers.  

The present design method combines FEM with 
a lay-up design process the authors proposed 
recently. The first step of optimization is to calculate 
the optimum lamination parameter distribution by a 
gradient method. Then, the repetition of the design 
process in each element finds optimum short fibers 
distribution. The maximum deflection of thin plates 
is chosen as an objective function to be minimized in 
the optimization and it turned out that the variable 
stiffness plates always give lower deflection 
compared to conventional plates which reinforced 
by parallel fibers. Moreover, it is also revealed that 
optimally distributed fibers tend to be allocated with 
certain tendency. 
 
 
1 Introduction 

Some materials in the natural world have local 
anisotropy or variable stiffness. For example, an 
internal structure of bone is fabricated by a spongy 
structure composed of optimally distributing voids, 
which enable it to keep both enough strength and 
lightness. In recent literature, such structure which is 
allowed to vary the stiffness property continuously is 
named as variable stiffness [1] or locally anisotropic 
plates. The concept of variable stiffness is employed 
to a design of fibrous laminated composite plates in 
the present work.  

Conventional laminated composite plates are 
fabricated typically by stacking orthotropic plies, 
each of which is composed of reinforcing straight 

fibers and matrix materials. It is known that 
structural designers can make use of the fiber 
orientation angles in the plies to design the overall 
mechanical properties most effectively. For years, 
tailoring of such composite plates has been done by 
varying the orientation of parallel fibers or thickness 
of the plies. Recent development in manufacturing 
techniques makes it possible to fabricate composite 
materials with fiber orientations that vary 
continuously. This allows us to make the composite 
plate reinforced by curvilinear fibers and to 
distribute the stiffness property more flexibly in the 
plate. Also noted is that the design space for fibrous 
composite can be dramatically expanded when it is 
compared to the conventional stacking sequence 
design problem. Thus, possibility is now available to 
improve the plate property significantly. 

Martin and Leissa [2] presented a variable 
stiffness concept to improve the buckling 
performance of the plate using the Ritz method. 
Hyer and Lee [3] used the finite element method 
with curvilinear fibers to analyze strength and 
buckling performance of variable stiffness plates. 
They varied the fiber orientation angle from one 
element to another, and it turned out that such plates 
have higher failure load than that of plates with 
parallel fibers. Gürdal and Olmendo [1] proposed an 
analysis method of the in-plane response of a 
variable stiffness panel reinforced by sinusoidal 
wave fibers using a system of coupled elliptic partial 
differential equations. An improvement in buckling 
performance of plate by varying shape of fibers was 
successfully confirmed. Setoodeh and his co-
workers [4, 5] combined the gradient method with 
the finite element method. They calculated optimum 
lamination parameter distribution that yields lower 
compliance and better buckling performance. But 
they did not obtain actual curvilinear fiber path from 
the obtained parameters.  
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The motivation of this study is to find optimum 
curvilinear fiber path from lamination parameter 
distribution. As an initial approach of such problem, 
an optimum short fiber distribution is determined for 
minimizing the maximum deflection in this paper. 
An angle deciding method from lamination 
parameters proposed by authors [6] is locally applied 
to each element of the finite element method to 
decide fiber orientation angles in the element. It is 
revealed that the plates with optimally distributed 
short fibers have higher stiffnesses than the 
conventional plates. It is also found that the short 
fibers tend to allocate with a certain directional 
tendency, and this suggests a possibility that an 
optimum continuous fiber distribution may exist.  
 

2 Optimization Procedures  

2.1 Lamination Parameters and Bending Stiffness  

The laminated plates considered here have 
symmetrically laminated 2K plies. Due to the middle 
surface symmetry, there is no coupling between 
bending and extension. Thus, the bending of plates 
is characterized only by bending stiffness. The 
differential equation governing bending of 
symmetrically laminated plates, as shown in Fig. 1, 
is 
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where w denotes the deflection of the plate. The 
bending stiffnesses Dij (i, j = 1, 2, 6) are 
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where Ui (i = 1, 2, 3, 4, 5) are material invariants. 
The lamination parameters Wi (i = 1, 2, 3, 4) that are 
made non-dimensional by /( / 2)k kz hζ = are written 
as  
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where θk are kth ply’s fiber orientation angles. As 
given in Eqs. 3., the lamination parameters are 
defined for whole thickness of the plates. Thus the 
number of design variables is four for each element 
and it is independent of the number of plies. This 
feature is advantageous from a view point of 
optimization. The parameters depend on each other 
because of their trigonometric relations. The 
relationships among the parameters are 
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Equations 4 are used as constraints in the parameter 
optimization, and the parameters form a convex 
feasible region. This is also advantageous for 
optimization. 
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Fig. 1. Symmetric 2K-ply laminated composite plate 
 
2.2 Lamination Parameter Optimization 

To determine the short fiber angles, the 
optimum distribution of lamination parameters is 
calculated first. Each element in the finite element 
method has a set of lamination parameters as 
independent design variables in the stiffnesses [Dij

(n)] 

(i, j = 1, 2, 6; n = 1, 2, …, ne), where ne is  the total 
number of elements.  

The optimization problem for the lamination 
parameters is formulated as   
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( n = 1, 2, …, ne) 
 

where wmax is the maximum deflection of plate and 
Wi

(n) are lamination parameters for element n. The 
objective function for the maximum static deflection 
is defined by 
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where D0 = ETh3/12(1-νLTνTL) is a reference stiffness, 
and P0 is representative load in the out-of-plane 
direction. As an optimizer, the modified feasible 
direction method was adopted in the ADS program 
[7] with the golden section method in one-
dimensional search, as referred in Fukunaga et al [8]. 
2.3 Angle Deciding Process  

Optimum fiber orientation angles are 
determined from lamination parameters by 
minimizing the error  
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between the optimum parameters and discrete 
parameters iW (i = 1, 2, 3, and 4) for all possible 
discrete lay-ups [6]. Although a vast number of 
discrete lay-ups exit (i.e. if one uses a five-degree 
increment angle, the total number of lay-ups is 364 ≈ 
1.68 millions), Eqs. 3 take simple forms and all the 
parameters can be calculated easily. Thus, repetition 
of this procedure in each element gives the optimum 
short fibers distribution. The accuracy of the angle 
deciding process has been confirmed in the literature 
[9]. 
2.4 Finite Element Formulation Modified in the 
Present method 

For symmetrically laminated thin plates, the 
strain energy stored in the plate during bending is 
given by 
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is a vector of bending curvatures, consisting of 
second derivatives of w, and [D] is the bending 
stiffness coefficient matrix 
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that relates the moment resultant 

{ } { }T

x y xyM M M M=  (10)

to the curvature Eq. 8. by the relationship 

{ } { }[ ]M D κ= . (11)

In applying the present optimization, each element 
has different stiffness [Dij

(n)] due to independent 
design variables Wi

(n). 
Suppose a rectangular finite element with 

nodes i, j, k, l and the deflection in the element is 
expressed [10] by  

{ }( , ) [ ] ew x y N d=  (12)

where {de} is the element displacement vector 

{ } { }e i j k ld d d d d=  (13)

obtained by listing four nodal displacement vector 
such as  
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The shape function [N] is written as  

{ }[ ] 1[ ]N P C −=  (15)

where {P} and [C] are defined by using  

{ }{ }( , )w x y P α=  (16)
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The curvature vector is obtained by  
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where [Q] is derived from Eqs. 8, 16, 17 and 18. 
Substitution of Eq. 20 into Eq. 7 yields the strain 
energy 
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in the element stiffness matrix in the present 
formulation.  

Following similar procedure, the work due to 
transversely distributed load q is written by 

( , ) ( , )W q x y w x y= − . (23)

The contribution of the external forces at nodes due 
to distributed load can be assigned by inspection. 
As in the standard finite element procedure, one 
obtains the global static equation as 

[ ]{ } { }K d f= . (24)

where [K], {d} and {f} are the global stiffness 
matrix, global displacement vector and global load 
vector, respectively. 
 

3 Numerical Results and Discussion 

3.1 Optimum Lamination Parameter Distribution 

Numerical results are given for symmetric 8-
ply laminated square plates, and the elastic constants 
used for calculation are taken for a graphite/epoxy 
composite:  

EL = 138 [GPa], ET = 8.96 [GPa], 

GLT = 7.1 [GPa], and νLT = 0.30. 
The boundary conditions for plates are 

designated by letters F, S and C in the direction of 
counterclockwise starting from the plate left edge, 
where F, S and C stand for free, simply supported 
and clamped edges, respectively. 

Figure 2 presents the optimum lamination 
parameter distribution calculated by the present 
method for symmetrically laminated square plate 
with all edges clamped (CCCC) under uniformly 
distributed load. Note that Figs. 2 are not a result for 
some plate with specific number of plies. Instead, 
they represent results for entire plate because 
lamination parameters are defined for whole 
thickness of the plate (See section 2.1). Also note 
that the definitions of W2 and W3 in this study are 
inverse to literature [4]. The number of finite 
elements employed is 10 × 10, although 20 × 20 
elements are used in the literature [4]. The calculated 
distribution in the present study corresponds well 
with that of the literature. Therefore, the validity of 
the lamination parameter optimization method of the 
present study is confirmed.  
3.2 Optimum Short Fiber Distribution 

The aim of this study is to determine optimum 
curvilinear fiber path of fibrous composite laminated 
plates. However, as the initial approach of such 
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Fig. 2. Optimum distribution of lamination 
parameters for symmetrically laminated square plate 

with all edges clamped (CCCC) under uniformly 
distributed load (10 × 10 elements) 
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study, the optimum short fiber distribution is 
determined in this study. Applying the angle 
deciding method explained in section 2.3 to all 
elements in the finite element method sequentially 
yields the optimum short fiber distribution. The 
results for each ply which is calculated from the 
optimum lamination parameter distribution (Fig. 2.) 
are shown in Fig. 3. The number of symmetric plies 
is eight. 

 
1st ply 2nd ply

3rd ply 4th ply

 
Fig. 3. Optimum short fiber distribution in each 

ply for symmetric 8-ply square plate with all edges 
clamped under uniformly distributed load  

(10 × 10 elements) 
 

Laminated plate

 
Fig. 4. Overlapped view of optimum short fiber 

distribution for symmetric 8-ply square plate with all 
edges clamped under uniformly distributed load  

(10 × 10 elements) 
 

The square painted in blue shows the first 
(outermost) ply. The green, pink, and orange square 
present the second, third, and fourth ply, 
respectively. One can see clear tendency in the first 
ply. The fibers in the outer two elements adjacent to 
the boundary radiate toward to the center of the plate, 
and the fibers in the inner ones are allocated 
concentrically. On the other hand, in the second ply, 
the fibers in the outer two elements are arranged 
concentrically, and the fibers in the inner ones 
radiate. However, the tendency of the fibers is weak 
compared to the first ply. It is weakened gradually as 
going to inner plies, and no concrete tendency in the 
orientation is found at the fourth layer.  

To confirm the effectiveness of the fourth layer, 
the overlapped view of Fig. 3 is shown in Fig. 4. 
Each color line corresponds with each ply’s fibers in 
Fig. 3, that is, blue lines represent the fibers in the 
first ply. In a similar way, green, red, and orange 
lines represent the second, third, and fourth plies’ 
fibers, respectively. The overlapped view gives 
much clearer tendency for concentricity and reveals 
inner lines’ contribution to forming a clear shape. 
The fibers in the fourth ply are allocated randomly at 
first sight, however the orange lines don’t turn to 
wrong way in the overlapped view. Therefore, it is 
found that the fiber distribution of inner ply is not 
negligible, either. 
3.3 Comparison with Conventional Plates  

To study the stiffness of the variable stiffness 
plates with optimally distributed short fibers, 
comparison is made in terms of the maximum 
deflection between the result for present plates and 
the result for the conventional plates which are 
composed of parallel fibers.  

 

Ex.1 SSSS Ex.2 CCCC Ex.3 CSFF

Ex.4 CSF(P)F Ex.5 Mixed
(S(CS)SS)

Ex.6 L-shape

 
Fig.5. Boundary condition examples used in the 

comparison with the conventional plates 
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Six examples of boundary conditions are 
employed for comparison and are shown in Fig. 5. 
All example plates except Ex. 6 are square and they 
have length a. Ex. 1 is totally simply supported 
(SSSS) plate. Ex. 2 is totally clamped (CCCC) plate. 
Ex. 3 is the plate with asymmetrical boundary 
condition (CSFF). Ex. 4 is the plate with a point 
support at the free corner of Ex. 3. Ex. 5 has mixed 
boundary conditions. A half of a lower edge (0.5a) is 
clamped and others are simply supported. Ex. 6 is 
the plate with notch whose length is 0.2a and all 
edges are simply supported. Numerical results are 
given for all examples when the plates are under 
concentrated load at the center of the plate.  

 
Table 1. Differences of the minimized maximum 
deflections for the variable stiffness plate and the 

conventional plates 

  Variable  
Stiffness 

LO+FEM (10x10) 
optimum lay-ups Difference

Ex1 0.144 0.149 
[45/-45/-45/-45]s -3.47% 

EX2 0.0664 0.0876 
[0/90/90/-65]s -31.9% 

EX3 0.529 0.572 
[15/-45/-45/-45]s -8.13% 

EX4 0.179 0.227 
[45/-45/-45/0]s -26.8% 

EX5 0.119 0.126 
[55/-50/-45/45]s -5.88% 

EX6 0.134 0.143 
[45/-45/-45/45]s -6.72% 

 
Table 1 lists the minimized maximum 

deflections for the variable stiffness plates and the 
conventional plates, the optimum lay-ups for the 
conventional plates and differences of the deflection. 
The minimum values and optimum lay-ups for the 
conventional plates that were determined by Narita 
[11] are employed for comparison. Note that the 
maximum deflections for the conventional plate are 
re-calculated for 10 × 10 meshes because 20 × 20 
meshes are used in the literature [11]. Since the 
present results give lower maximum deflections than 
the conventional plates for all the cases, it is 
uncovered that the variable stiffness plates can be 
designed to have higher stiffnesses than the 
conventional plates.  

The overlapped views of the variable stiffness 
plates for examples in Fig. 5 are shown in Fig. 6. 
The results are also presented for the symmetric 8-
ply plates. In the Ex. 1, cross lines through the center 
of plate can be seen. However, most of other 
elements have the angles of 45° and -45°. Those 
configurations are similar to those of the 

conventional plates, in other words, Ex. 1 plate has 
few differences in their structure when it is 
compared to the optimum conventional plate. Thus, 
the improvement is not significant (-3.47 %) and 
stays in the sixth among the examples. On the other 
hand, Ex. 2 has the highest improvement (-32.9 %), 
which may be caused by the tendency of the 
optimum short fiber distribution being much 
different from that of the conventional plate. The 
shape of Ex. 2 is clear and looks like “spider’s web”, 
but the optimum lay-up of the conventional plate 
([0/90/90/-65]s) is far from it. Therefore, the much 
difference in the improving value may be occurred. 
This is also said with respect to Ex. 4.  

It is also revealed in Ex. 3 that the variable 
stiffness plates with optimally distributed short 
fibers have a certain tendency in their direction. In 
Ex. 3, the maximum deflection point is the upper 
right corner and the fibers in the first ply tend to 
flow from clamped left edge to maximum deflection 
point. Moreover, fibers in the inner three plies are 
allocated in the perpendicular direction to those in 
the first ply. Ex. 4 plate has S-shape orientation 
tendency. Ex. 5 and Ex. 6 give similar ones with 
Ex.1, but fibers near the clamped edge tend to curve 
in Ex. 5. As discussed above, it is clearly seen that 
the optimum short fibers form a certain shape. 
Therefore, the present method may enable us to 
determine the optimum curvilinear fiber path.  
 
4 Conclusion 

A design method is proposed for fibrous 
composite laminated plates with variable stiffness. 
The plate structure imitates the internal structures of 
bone or shell which possess variable stiffness in the 
natural world. In the present study, as an initial 
approach of designing the composite plates with 
continuous curvilinear fibers, the optimum short 
fiber distribution is determined.  

The comparison between the variable stiffness 
plates with the optimally distributed short fibers and 
the conventional plates with the parallel fibers is 
made for maximum deflection. Then, the variable 
stiffness plates give lower maximum deflections for 
all examples. Therefore, it is concluded that the plate 
with optimally distributed short fibers may be 
designed to have higher stiffnesses than the 
conventional plates. Moreover, it is found that the 
optimum short fibers tend to allocate with a certain 
directional tendency. Hence, the plate with optimally 
continuous curvilinear fibers and having higher 
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stiffness than the conventional plate may be 
fabricated using the result of the present study.  
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