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Abstract  

In the design of composite sections beam 

theories are used, which require the knowledge 

of the cross sectional properties, i.e. the 

bending-, the shear-, the torsional-, the axial 

stiffnesses and the coupling terms. In the 

classical analysis the properties are calculated 

by assuming kinematical relationships, e.g. 

cross sections remain plane after the 

deformation of the beam. These assumptions 

may lead to inaccuracy or to contradictory 

results. In the paper a new theory is presented, 

in which no kinematical assumption is applied, 

rather the properties are derived from the 

accurate (three dimensional) equations of 

beams using limit transition. The theory 

includes the shear displacements both in the in-

plane and in the torsional deformations, and it 

is applied both for open and for closed cross 

sections. 
 

 

1 Introduction  

Fiber reinforced plastic (composite), thin-walled 

beams are widely used in the aerospace industry and 

are increasingly applied in the infrastructure.  

In beam theories the stresses and strains of an 

arbitrary point of the cross section is calculated from 

the displacements of the beam’s axis. To reach this 

relationship the displacements of the axis are 

defined, and kinematical assumptions are made.  

For example, when a beam deforms only in a 

plane (e.g. in the x-z plane), in the classical beam 

theory [1], (when the shear deformation is 

neglected), only the displacement of the axis in the z 

direction  (w)   is  needed  to  calculate the strains 

and deformations of any point of the cross section. 

When the shear deformation is taken into account, 

according to Timoshenko’s beam theory [2], two 

displacement functions of the axis are required: the 

displacement perpendicular to the axis (w) and the 

rotation of the cross section (χz). 

The plane cross section assumption leads to an 

overestimation of the shear stiffness and  contradicts 

the three dimensional equations of the beam: the 

plane cross section results in a uniform shear strain 

and a uniform shear stress, however, according to 

the equilibrium equations the shear stress and strain 

distribution is parabolic (Fig.1).  
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Fig. 1.  Shear deformation assuming uniform and 

parabolic shear strain 

 

This contradiction was recognized already by 

Timoshenko, and the shear stiffness was calculated 

as follows [1]: the axial stresses are calculated on the 

basis of the kinematical assumption (i.e. cross 

sections remain plane), while the shear stresses are 

calculated from the equilibrium equation, and the 

shear stiffness is evaluated with the use of the strain 

energy. This leads to the usage of the shear 

correction factor which, in many cases, gives 

satisfactory results. However, as will be shown in 

the next section, for composite beams it may be  

inaccurate. 

When a beam is subjected to torsion, in the 

classical (Vlasov) theory only the rotation of the 

cross section (ψ) about the beam’s axis is needed to 

calculate the displacements of any point of the cross 

section. (See [1] for isotropic and [2, 3] for 

composite beams.) When the axial warping is 

constrained, an open section beam carries the torque 

load mainly by the bending and shear of the flanges. 

Note, however that according to Vlasov’s theory the 

shear deformation of the walls – in restrained 

warping – is neglected. To overcome this 
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shortcoming, analogously to Timoshenko’s beam 

theory, a new displacement function was introduced 

[2, 4, 6], (in addition to the rotation of the cross 

section, ψ): the rate of twist due to warping ( Bϑ ). 

The rotational stiffnesses were calculated 

analogously to the in plane stiffnesses [2]. 

When we consider the spatial (in plane and 

torsional) deformations of the beam, seven 

displacements are taken into account [2]: 

           u ,   v ,   w ,   ψ , yχ , zχ , Bϑ  

u is the axial displacement, while v and w  are the 

displacements perpendicular to the axis, ψ  is the 

rotation of the cross section about the beam’s axis; 

yχ , zχ  are the rotation of the cross sections about 

the z and y axes, and Bϑ  is the rate of twist due to 

warping.  For doubly symmetrical orthotropic cross 

sections the material law can be written in the 

following form: 
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where <> denotes a diagonal matrix, xN̂  is the axial 

force (Fig.2), zM̂  and yM̂  are the moments about 

the z and y axis, ωM̂ is the bimoment, yV̂ and zV̂  are 

the shear forces, ωT̂  is the restrained warping 

induced torque, while SVT̂  is the Saint Venant 

torque, the sum of which gives the torque: 

SVTTT ˆˆˆ += ω  (2) 

 

 The generalized strains, on the right side of Eq.1, 

are calculated from the displacements [2].  
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Fig. 2.  Internal forces in a beam 

 

2 Problem statement 

To show the weakness of the above theory we 

consider the example of a thin walled beam, which 

consists of three walls connected at their axes:  
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Fig. 3.  Beam, which consists of three parallel wall 

segments 

 

The Young modulus of the material are the same in 

each wall, and it is denoted by E, while the shear 

stiffness of the middle wall is much lower than those 

of the other two: 12 GG << .  According to the 

classical shear deformation (Timoshenko) theory the 

axial stresses in the walls are the same, and hence, 

from the equilibrium the shear stresses are identical 

too. These stresses lead to the following bending and 

shear stiffnesses:  
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These results are incorrect: the middle wall, because 

of the low shear stiffness, does not play a role, and 

hence the stiffnesses should be 
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which are failed to be predicted by the classical 

shear deformation theory. Note that the same 

problem may arise in the case of torsion. 

 In this paper we consider thin walled beams 

which consist of flat wall segments as shown in the 

figure below.  
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Fig. 4.  Open and closed section beams 

 

3 Solution  

To overcome the problem presented in the previous 

section the following solution is presented: thin 

walled beams can be solved accurately using the 

three dimensional equations if the displacements, 

strains and stresses (and as a consequence the loads) 

vary trigonometrically along the axial coordinate of 

the beam: 

 
 

Fig. 5.  Variation of the load along the beam 

 

These equations are formulated and then the cross 

sectional properties are developed by limit 

transition, assuming that L (i.e. the half wavelength 

of the trigonometrical functions) is large compared 

to the seize of the section. 

It is important to note that we keep the 

“classical” definition of the beam forces and strains, 

and the seize of the stiffness matrix is not increased 

either: only the stifnesses are calculated in a 

consistent manner.  

It may be stated that for the previously 

presented theories the “best” stiffnesses are 

determined.  

4 Solution for one wall segmant 

To obtain an accurate solution for a composite beam 

first a single, flat wall element (Fig.6.) is considered. 

(For simplicity only symmetrical layups are 

considered.) 

4.1 Basic equations of one anisotropic plate  

The axial strain, transversal strain and the shear 

strain are related to the displacements of the wall as 
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while the constitutive equations are 
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Fig. 6.  Coordinate system attached to a wall 

segment and the displacements 

 

where ijA  are the elements of the tensile 

stiffness matrix of a layered composite plate [2].  

It is assumed that sN  , i.e. the resultant forces per 

unit length perpendicular to the beam axis, is 

small compared to xN  and q , and hence sε  can 

be eliminated form Eq.6. We obtain 
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Where ijA  can be calculated from the values of 

ijA . The distributed loads acting on a plate 

element are related to the internal forces by the 

equilibrium equations: 
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4.2 Solution for the trigonometric loads  

As we stated above the solution of one plate is 

assumed in the form of trigonometric functions. The 

displacements of the axis of the wall is assumed in 

the following form: 

 

( ) xwxwxw ooo αα cos
~~sin~ −=            (10) 

( ) xuxuxu ooo αα sin
~~cos~ +−=  (11) 

 

where ou~ , ow~ , ou
~~ , ow

~~ , are yet unknown constants 

and 

L

π
α =  (12) 

Here length, L is shown in Fig. 5. 

 

 The two dimensional displacement of the 

wall is: 
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In Eq.13 su~  and su
~~  are functions of s. The 

loads on the wall are also assumed in the form of 

trigonometric functions: 

 

( ) xpxpzxp zzs αα cos
~~sin~, +=  

 
(14) 

( ) xpxpzxp xxs αα sin
~~cos~, +=  

 
(15) 

 

After algebraic manipulation from Eqs. 5, 7, 8 

and 11 we obtain: 
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where dot denotes the derivation with respect to s.  

Eq.16 is a second order differential equation 

system for the unknown functions  su~  and su
~~ . 

When the axial loads xp~ and xp
~~  are constant 

(uniform load), it can be shown  that the general 

solution is: 
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When the axial loads are linearly varying 

through the thickness, and the distribution is 

given by the following equations: 

spp xx 1
~~ =     

spp xx 1
~~~~ =  

 

(21) 

The particular solution of Eq.16 is: 
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If both uniform and linearly varying axial loads 

( xp~ and xp
~~ ) are considered, the solution is 

obtained as the sum of Eqs.17, 18   and 22, 23: 
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These functions contain 2 × 5 constants: 
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We may observe that for orthotropic walls, 

when 01616 == AA , the two displacement 

functions (Eqs.24 and 25) are uncoupled: 
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4.3 Resultants  

Using the above derived displacements we can 

determine the strains and the internal forces from 

Eqs. 5 and 7. They can be separated similarly as the 

displacements and the loads: 
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Then the resultant forces on a wall segment are 

defined, and calculated as 
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The resultant loads (which depend on the axial 

coordinate, x only) are the moment: m, the axial 

load: xop , and the transverse load: sop , which 

can be calculated from the equilibrium equations, 

which result in: 
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These loads can be written in the following form: 

xmxmm αα sin
~~cos~ +=

xpxpp xoxoxo αα sin
~~cos~ +=

xpxpp sososo αα cos
~~sin~ +=  

 

(36) 

 

Note again that these functions depend on the 

constants given in Eqs.26 and 27. 

 

5 Exact solution for a beam 

Using the above derived displacements for one wall 

segment we can determine the exact solution of a 

beam consisting of several wall segments. The 

displacements of each wall are given by Eqs.24 and 

25 which depend on the constants given in Eqs.26 

and 27. 

The constants 1C , 3C , 2C , 4C  can be 

determined from the continuity conditions. At 
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each intersection the displacement and the shear 

force must be continuous (Fig.4.): 
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while for an open section beam the shear force 

on the free edges must be zero 
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Using the continuity conditions we obtain an 

exact solution of the beam, which depends only on 

(Eqs. 26 and 27) 
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(40) 

We may observe that the displacements of the 

beam (Eqs. 10 and 13) depends on α (Eq.11), which 
is a function of the “length”, L.  

The hyperbolic and trigonometrical functions 

in the displacements (Eqs.24 and 25) can be 

eliminated, if the Taylor series expansions of the 

functions with respect to α are determined. We must 

keep in mind that parameter L is related to the length 

of the beam, which is large compared to b, and 

hence α is small. In such a way we obtain functions 

where the displacements are polynomials, similarly 

as in the classical beam theory. However, at least for 

trigonometrically varying loads, we obtain an 

“exact” solution of the beam. The accuracy of the 

solution depends on the number of terms in the 

Taylor series expansion. 

 

5 Cross sectional properties of  a beam 

When the displacements of each wall is given the 

strain energy of the beam can be formulated. For  

length L, for each wall segment, the strain energy is: 
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which can be written (see Eq.30-33) in the following 

form 
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To derive the cross sectional properties of the 

beam we compare the strain energy (Eq.42) to that 

of a beam given in [6].  

From the condition that for the same 

displacements of the axis of the beam the strain 

energy obtained from the exact solution (Eq. 42) and 

from the beam equations are the same the properties 

can be determined. In the calculation we keep the 

same number of terms in the Taylor series expansion 

for both the exact and the beam solution.  

This calculation requires an extensive 

algebraic manipulations of the equations, which, 

excepts for very simple cases, can be done 

numerically only. 

For example, in the case treated in the 

Problem statement, this new theory results in Eq.4.  

Another simple example, if we have an 

orthotropic beam, which consists of one anisotropic 

wall only. The constitutive equation is: 
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where the stiffness matrix, C is: 
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where 2
166611det AAAA −= . For orthotropic wall 

( 01616 == AA ) this matrix simplifies to the well 

known form: 
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5 Conclusion 

In the classical analysis the properties of a 

beam are calculated by assuming kinematical 

relationships, e.g. cross sections remain plane after 

the deformation of the beam. These assumptions 

may lead to inaccuracy or to contradictory results. In 

the paper a new theory is presented, in which no 

kinematical assumption is applied, rather the 

properties are derived from the accurate (three 

dimensional) equations of beams using limit 

transition.  

This calculation requires an extensive 

manipulations of the equations, which, excepts for 

very simple cases, can be done numerically only. 

However, this solution does not contain the 

shortcomings of the classical derivations. 
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