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Abstract  

An efficient beam element for the analysis of 
thin-walled laminated composite beams of 
open/closed sections is proposed. The cross-
sectional stiffness of the beam is derived analytically 
where all possible couplings between torsion, 
bending and axial deformations are considered. In 
the finite element approximation of the beam, the 
torsional deformation requires a C1 formulation due 
to incorporation of warping deformation while the 
bending deformation require a C0 formulation due to 
the incorporation of shear deformation. The 
difficulty of implementation of both these 
formulations in the present coupled problem is 
successfully overcome by adopting an efficient 
approach for the finite element approximation of the 
bending deformations. The element is used for the 
numerical examples of open section I beam and 
closed section box beam problems having different 
boundary and loading conditions. The obtained 
results are compared with analytical/numerical and 
experimental results available in literature to 
demonstrate the performance of the proposed 
element.   
 
 
1 Introduction  

The modelling of thin-walled laminated 
composite beams and beam like slender structures, 
as an one dimensional condensed beam element, has 
drawn the attention of researchers for quite 
sometime, and a number of investigations have been 
carried out to study the different aspects of this. A 
few representative studies relevant to the present 
context are given in [1-8]. One of the initial 
applications of composite beam theory was found in 
the analysis of helicopter rotor blades. It has 
subsequently been applied to the analysis of 
pultruded composite profiles and other applications, 

including the analysis of long wind turbine blades 
made of composite materials.  

The investigations carried out so far can be 
broadly divided into two groups, based on the 
approach followed to evaluate the constitutive 
matrix of the beam element, defined as the beam 
cross-section stiffness coefficients. The first and 
most common approach is based on an analytical 
technique, while the other approach requires a two-
dimensional finite element analysis to obtain the 
cross-section stiffness matrix. Hodges and his co-
workers [3] pioneered the second approach, which is 
defined as the so-called variational asymptotic beam 
section analysis (VABS). It is based on a method 
known as the variational asymptotic method (VAM) 
[9], where the three dimensional elasticity problem 
is systematically divided into a two dimensional 
cross-sectional problem, and a one dimensional 
beam problem. VABS has the advantage that beams 
having solid or thick-walled cross sections can be 
analyzed, where the three dimensional stresses can 
be extracted in the post processing stage. Opposed to 
this, the fully analytical approach may be preferred 
specifically for the analysis of beams with thin 
walled cross sections in order to avoid the additional 
two-dimensional finite element analysis required in 
VABS. 

In the present study, a fully analytical (closed-
form) approach is adopted for the derivation of the 
cross-sectional stiffness matrix considering different 
effects and their coupling to yield a very general 
formulation, which includes a torsional warping 
moment apart from the usual de St. Venant torsion 
contribution, axial force, bi-axial bending moments 
and transverse shear forces, thus yielding a 7x7 
cross-sectional stiffness matrix. All the elements of 
this matrix are explicitly derived for open I section 
and closed box section profiles. For the constitutive 
equation of any beam wall, defined locally, 
provision is kept to enable the specification of either 
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plane stress conditions (zero normal stress along the 
wall profile) or plane strain conditions (zero normal 
strain along the wall profile).   

In the one dimensional finite element 
approximation, the torsional deformation requires C1 
continuity of the twisting rotation due to 
incorporation of the out of plane warping 
deformation. This requirement is satisfied with the 
use of a Hermetian interpolation function 
considering the twisting rotation and its derivative 
with respect to the length coordinate as the nodal 
unknowns. The association of the derivative of the 
twisting rotation helps to impose warping restraints 
or warping free conditions by constraining or 
releasing this nodal unknown. At the same time the 
bending deformation requires C0 continuity of the 
transverse displacements due to the incorporation of 
the transverse shear deformation of the beam walls. 
A reduced integration technique is required for the 
evaluation of the stiffness matrix in order to avoid 
shear locking. As the bending deformation is not 
uncoupled from the other modes of deformation, 
including torsion, it is difficult to implement C0 with 
a C1 formulation having different integration 
schemes. Lee [7] tried to solve the problem by an 
amended representation of the torsional deformation, 
so as to model it with a C0 formulation like bending 
deformation, but this involved a non-physical 
parameter in the formulation. Moreover, the C0 
formulation with reduced integration technique is 
susceptible to display inherent numerical 
disturbances like the occurrence of spurious modes.  

Keeping these aspects in view, the finite 
element implementation of the bending deformation 
is carried out with a different approach based on the 
concept of the first author [10]. It does not require a 
reduced integration technique, which effectively 
eliminates the problem mention above. Based on this 
methodology a three node beam element, as shown 
in Fig. 1, has been developed, where the nodes at the 
two ends contain seven degrees of freedom (three 
translations, three rotations and the derivative of the 
twisting rotation), while the internal node contains 
five degrees of freedom (three translations and two 
bending rotations).  

 

 
 

Fig. 1.  Three node beam element  
 

A computer code has been written in 
FORTRAN for the implementation of the element, 
which has been used to solve numerical examples of 
composite beams having open I and closed box 
sections. The results obtained in the form of 
deflections, angles of twist, and bending slopes are 
compared with analytical, experimental and/or other 
finite element analysis results available in literature. 
The results show a very good performance of the 
proposed element in terms of convergence and 
solution accuracy. The developed element is also 
utilized to derive some new results, which are 
presented for future references.  

 
2 Formulation  

A portion of the beam shell wall, with its local 
coordinate system x-s-n and displacement 
components, along with the global coordinate 
system x-y-z and displacement components, of the 
beam is shown in Fig. 2. In Fig. 2, O is the centroid, 
and P is the shear centre/pole of the beam section. 
The displacement components at mid-plane of the 
shell wall in the local coordinate system (x-s-n) may 
be expressed in terms of the global displacement 
components of the beam [1] as  

 

xzy zyUu θϕθθ ′+++=  (1) 

xrWVv θαα −+= sincos  (2) 

xqWVw θαα ++−= cossin  (3) 

 
where ϕ  is the warping function, =yθ  yV Ψ+′−  
( V ′  is the derivative of V with respect to x 
and yΨ  is the rotation of beam section about z 
for the transverse shear deformation) is the 
bending rotation of the beam section with 
respect to z, and zz W Ψ+′−=θ  is the bending 
rotation of the beam section with respect to y. 
The corresponding displacement components at 
a point away from the shell mid-plane may be 
expressed as 

 

⎟
⎠
⎞

⎜
⎝
⎛ +

∂
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−+= xnx
wnuu ψ  

(4) 
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⎟
⎠
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(5) 

ww =  (6) 

 
where xnψ  and snψ  are the shear rotations of the 
shell sections about s and x, respectively, for 
transverse shear deformation. It is assumed that snψ  

= 0 while xnψ  may be expressed in terms of the 
corresponding global beam parameter as  

 

ααψ cossin zyxn Ψ+Ψ−=  (7) 

 
 
 

 
 

Fig. 2.  Cross-section of a portion of shell wall of the 
thin-walled beam with coordinated systems  
 
 
 

With the above equations, the displacement 
components at any point within the shell wall may 
be expressed in terms of the global beam 
displacement components as 
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( ) xnrWVv θαα +−+= sincos  (9) 

xqWVw θαα ++−= cossin  (10) 

 
The strain components at the corresponding 

point in the local axis system (x-s-n) may be 
expressed as  
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Assuming the normal strain component sε  to 

be zero (plane strain condition), or the normal stress 
component sσ  to be zero (plane stress condition), 
the reduced strain vector may be expressed in terms 
of the global displacement parameters with the help 
of the above equations (7-10) as    
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The above equation can further be rearranged 

in matrix form as 
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The stress strain relationship considering the 

transverse shear deformation of the laminated shell 
wall [11] in the local coordinate system (x-s-n) may 
be expressed as 
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Assuming sε = 0 or sσ = 0 along with nsψ = 

0, the above equation reduces to   
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where 1111

~ QQ = , 1616
~ QQ = , 6666

~ QQ =  and 

5555
~ QQ =  for plane strain ( sε = 0); and 

2212121111 /~ QQQQQ −= , /~
26121616 QQQQ −=  22Q , 

2216166666 /~ QQQQQ −=  and 5555
~ QQ =  for plane 

stress ( sσ = 0).    
Using equations (13) and (15) the strain energy 

of the system can be written as  
 

{ } { } { } [ ]{ }∫∫ == dxDdvU TT εεσε
2
1

2
1~

 (16) 

where 

[ ] [ ] [ ][ ]
[ ] [ ][ ]( ) [ ]∫∫ ∫
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T
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All the elements of the cross-sectional stiffness 

matrix [D] are explicitly derived for open I section 
and closed box section profiles. For this purpose the 
warping function ϕ  used in the above equations are 
taken as  

 

δδϕ /2 scArds −= ∫  (17) 
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where ∫=
66

~Q
ds

sδ , ∫=
66

~Q
dsδ  and  is the cross-

sectional area enclosed by the mid-plane contour 
(closed section). For an open section profile, the 
warping function may be simply obtained by 
dropping the second term associated with secondary 
warping, thus giving . 

cA

∫= rdsϕ
 For the one dimensional finite element 

implementation, a quadratic approximation has been 
adopted for the axial deformation, which follows a 
Lagrangian type formulation. The torsional 
deformation is based on a Hermetian formulation as 
mentioned earlier, where a cubic approximation has 
been adopted. The approximation of the bending 
deformation coupled with transverse shear 
deformation is based on the concept proposed by 
Sheikh [10]. Based on this the field variables are 
approximated as follows 

 
2

321 xaxaaU ++=  (18) 

3
7

2
654 xaxaxaaV +++=  (19) 

3
11

2
1098 xaxaxaaW +++=  (20) 

xaay 1312 +=Ψ  (21) 

xaaz 1514 +=Ψ  (22) 

3
19

2
181716 xaxaxaax +++=θ  (23) 

 
It should be noted that  and  are taken 

as the field variables instead of 
yΨ zΨ

yθ  and zθ , which 
are usually used in a typical C0 formulation. It 
should be noted also that yθ  and zθ  appear as 
nodal unknowns instead of yΨ and . Now, with 
the help of equations (19-22), the bending rotations 

zΨ

yθ  and zθ  may be expressed as   
 

2
7651312 32 xaxaaxaay −−−+=θ  (24 

2
111091514 32 xaxaaxaaz −−−+=θ  (25) 

The unknowns ( ) in the above 
equations (18-23) are expressed in terms of the 
nodal displacement vector {

19321 ,,, aaaa L

}δ  after substitution of 
U (eq. (18)), V (eq. (19)), W (eq. (20)), yθ  (eq. 
(24)) and zθ  (eq. (25)) at all three nodes of the 
beam element (see Fig. 1); and xθ  (eq. (23)) and 
its derivative xθ′  at the two external nodes as 

 

{ } [ ]{ }aR=δ  or { } [ ] { }δ1−= Ra  (26) 

 
where { } [ ]Taaaaaa 1918321 L= , 
{ } [ 2221111111 WVUWVU xzyx θθθθδ ′=  

, and  
the matrix [R] of order of 19x19 contains the 
element nodal coordinates.  

]Txzyxzy WVU 333333322 θθθθθθ ′

The generalized strain vector { }ε  in equation 
(13) may be expressed in terms of { }a  using 
equations (18-23) as  
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(27) 

 
where the matrix [S] of order of 7x19 is a function of 
x. The strain vector { }ε  can be finally expressed in 
terms of the nodal displacement vector { }δ  using 
equation (26) as 

 

{ } [ ][ ] { } [ ]{ }δδε BRS == −1  (28) 

 
With the above equation, the strain energy (eq. 

(16)) of the system may be expressed as  
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{ } [ ] [ ][ ] { } { } [ ]{ }δδδδ KdxBDBU TTT

2
1

2
1~ == ∫  (29) 

 
where [K] is the element stiffness matrix. Using 
equations (20) and (26), the element load vector due 
to a distributed transverse load of intensity q acting 
in the direction of z may be expressed as  

 

{ } [ ] [ ]∫−= dxSqRP T
q

T  (30) 

 
where the row matrix [ ]qS  of 19 is function of x. 
The integrations involved in the evaluation of the 
element stiffness matrix [K] and the load vector {P} 
are carried out numerically following the Gauss 
quadrature technique. 
 
3 Numerical Examples  

In this section numerical examples of I and box 
beams are analysed using the proposed element, and 
the results obtained are compared with analytical, 
experimental and/or numerical results available in 
literature for most of the cases. The analysis is 
usually based on plane stress conditions, unless 
specified otherwise. In all examples the beam walls 
are assumed to be constituted by identical layers of 
identical thickness, but the layers may have different 
orientations. The geometry of the beam sections are 
defined in terms of centre line dimensions.  
 
3.1 Simply supported I beam under uniformly 
distributed load  

A 2.5m long open section I beam simply 
supported at its two ends, and subjected to a 
uniformly distributed transverse load of 1kN/m 
along the web of the beam, is analysed using the 
proposed element. The beam has a depth of 50mm, a 
flange width of 50mm and the same thickness of 
2.08mm for the flanges and the web. The study is 
made with different symmetrical stacking sequences, 
where the flanges and the web are having identical 
lay-ups for all cases. The material properties of the 
layers are given in Table 1. The analysis is carried 
out assuming both plane stress and plane strain 
conditions. The values of deflection at the centre of 
the beam and the bending slope at its supports 
obtained in the present analysis are presented in 
Table 1 and Table 2, respectively. The results for the 

deflection are compared with those of Lee [7] and 
Lee and Lee [12] in Table 1. Lee [7] considered the 
effect of transverse shear deformation, whereas the 
study of Lee and Lee [12] is  based on classical 
laminate theory. In both the studies [7, 12], one 
dimensional finite element analysis has been applied 
after obtaining the cross-sectional stiffness matrix 
analytically. For the validation of the results in 
[7,12], the beam structure was analysed using 
ABAQUS [13] where the S9R5 shell element was 
used to model the beam. The results produced by 
ABAQUS [13] are also included in Table 1. The 
table shows an excellent agreement of the present 
results with the other results, especially the results of 
Lee [7]. Moreover, the present results based on 
plane stress conditions are found to be closer to the 
results produced by ABAQUS [13]. It is also 
observed that only two elements could attain the 
convergence in all the cases.    
 
Table 1.  Deflection w (cm) at the centre of the 
simply supported I beam under uniform distributed 
loading (E1 = 53.78GPa, E2 = 17.93GPa,  G12 = 
8.96GPa, G13 = 8.96GPa, G23 = 3.45GPa, ν12 = 0.25)  
 

Stacking sequence [0/0]4S [15/-15]4S [30/-30]4S

Present ( sσ = 0) - 2† 6.2641 6.9286 9.3195 

Present ( sσ = 0) - 4 6.2641 6.9286 9.3195 

Present ( sε = 0) - 2 6.1342 6.6404 8.3092 

Present ( sε = 0) - 4 6.1342 6.6404 8.3092 

Lee [7] ( sσ = 0) 6.259 6.923 9.314 

Lee [7] ( sε = 0) 6.129 6.637 8.307 

Lee and Lee [12] ( sσ = 0) 6.233 6.899 9.290 

Lee and Lee [12] ( sε = 0) 6.103 6.610 8.281 

ABAQUS [13]  6.340 6.989 9.360 
Stacking sequence [45/-45]4S [60/-60]4S [75/-75]4S

Present ( sσ = 0) - 2 13.453 17.001 18.459 

Present ( sσ = 0) - 4 13.453 17.001 18.459 

Present ( sε = 0) - 2 11.369 15.153 17.686 

Present ( sε = 0) - 4 11.369 15.153 17.686 

Lee [7] ( sσ = 0) 13.446 16.992 18.449 

Lee [7] ( sε = 0) 11.363 15.151 17.683 

Lee and Lee [12] ( sσ = 0) 13.421 16.962 18.411 

Lee and Lee [12] ( sε = 0) 11.340 15.119 17.643 

ABAQUS [13]  13.479 17.023 18.490 
† Number of elements 
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Table 2.  Bending rotation θz x 100 (rad) at the 
support of the simply supported I beam under 
uniform distributed loading  
 

Stacking sequence [0/0]4S [15/-15]4S [30/-30]4S

Present ( sσ = 0) - 2 7.9778 8.8301 11.892 

Present ( sσ = 0) - 4 7.9778 8.8301 11.892 

Present ( sε = 0) - 2 7.8116 8.4613 10.600 

Present ( sε = 0) - 4 7.8116 8.4613 10.600 

Stacking sequence [45/-45]4S [60/-60]4S [75/-75]4S

Present ( sσ = 0) - 2 17.179 21.711 23.567 

Present ( sσ = 0) - 4 17.179 21.711 23.567 

Present ( sε = 0) - 2 14.515 19.353 22.582 

Present ( sε = 0) - 4 14.515 19.353 22.582 

 

3.2 Clamped box beam under uniformly 
distributed load  

A box beam clamped at both the ends, and 
subjected to uniformly distributed transverse load of 
6.5kN/m along the mid-plane of one of the webs, is 
analysed using the proposed element assuming both 
plane stress and plane strain conditions. The beam is 
assumed to be free from axial and warping restraints 
at the supports. The beam is 1.0 m long, 70 mm deep 
and 50 mm wide, where all the beam walls are 2 mm 
thick having a stacking sequence of (45/-
45)2/(0/0)6/(45/-45)2. The material properties 
assumed for all layers are: E1 = 148.0 GPa, E2 = 9.65 
GPa, G12 = G13 = G23 = 4.55 GPa, ν12 = 0.3. The 
values of the deflection and angle of twist at the 
centre of the beam obtained using the present 
analysis are presented in Table 3, along with results 
obtained by Kollar and Springer [5] assuming plane 
strain conditions, and Vo and Lee [14] assuming 
both plane stress and plane strain conditions. Kollar 
and Springer [5] solved the problem in closed form 
(analytically), while Vo and Lee [14] applied one 
dimensional finite element analysis after obtaining 
the cross-sectional stiffness matrix analytically. As 
both of the studies [5,14] did not consider the effect 
of transverse shear deformation, the present analysis 
was also carried out with a high value of transverse 
shear rigidity (G13 = G23 = G12 x 106), and the results 
obtained are included in Table 3 (marked ‡). The 
results show a significant effect of the transverse 
shear deformation. The table shows that the 
convergence of the present finite element 

formulation is good. It also shows a good agreement 
between the results obtained by the different 
techniques having similar basis.  
 
Table 3.  Deflection and angle of twist at the centre 
of the clamped box beam under uniform distributed 
loading  
 
 

 w x 104 (m) Θx x 103 (rad) 

Present † ( sσ = 0) - 2 7.811 6.705 

Present † ( sσ = 0) - 4 7.811 6.703 

Present † ( sσ = 0) - 6 7.811 6.703 

Present † ( sε = 0) - 2 5.779 2.755 

Present † ( sε = 0) - 4  5.779 2.754 

Present † ( sε = 0) - 6 5.779 2.754 

Present ‡ ( sσ = 0) - 2   4.940 6.705 

Present ‡ ( sσ = 0) - 4 4.940 6.703 

Present ‡ ( sσ = 0) - 6 4.940 6.703 

Present ‡ ( sε = 0) - 2 4.378 2.755 

Present ‡ ( sε = 0) - 4 4.378 2.754 

Present ‡ ( sε = 0) - 6 4.378 2.754 

Vo and Lee [14] ( sσ = 0)  4.940 6.427 

Vo and Lee [14] ( sε = 0) 4.380 2.678 

Kollar and Springer [5] ( sε = 0) 4.880 2.760 
† G13 = G12, ‡ G13 = G23 = G12, x 106

 
3.3 Cantilever I beam under tip load  

A 30 inch long cantilever I beam subjected to a 
transverse unit load (1.0 lb) at the free end is 
analysed using the proposed element assuming 
restrained warping at both ends. The beam has a 
depth of 0.5 inch, a flange width of 1.0 inch. and 
same thickness (0.04 inch) is assumed for the 
flanges and the web. The stacking sequence of the 
flange is 0/90/0/90/90/0/15/15, while that of the web 
is 0/90/0/90/90/0/90/0. The assumed material 
properties are: E1 = 20.59 x106 Psi, E2 = 1.42 x106 
Psi, G12 = G13 = G23 = 0.89 x106 Psi, ν12 = 0.42. The 
variation of deflection, bending slope and twisting 
rotation along the length of the beam are plotted in 
Fig. 3, Fig. 4 and Fig. 5, respectively. The results for 
the bending slope and twisting rotation are compared 
with the numerical results of Jung et al. [4] and the 
experimental results of Chandra and Chopra [15] in 
Fig. 4 and Fig. 5.  
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Fig. 3.  Variation of deflection of the I beam  
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Fig. 4.  Variation of bending slope of the I beam  
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Fig. 5.  Variation of twisting rotation of the I beam  

 

Jung et al. [4] has produced results based on a 
mixed formulation, as well as on the displacement 
formulation of Smith and Chopra [16], where one 
dimensional finite element has been applied after 
getting the cross-sectional stiffness matrix 
analytically. The figures show a very good 
agreement between the results.   
 
3.4 Cantilever box beam under tip load/twisting 
moment  

A 30 inch long cantilever box beam having a 
depth of 0.5 inch, a width of 0.923 inch and 
assuming the same thickness (0.03 inch) for all the 
walls consisting of 6 layers is analysed using the 
proposed element.  
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Fig. 6.  Variation of bending slope of the box beam 
under a transverse load at the tip 
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Fig. 7.  Variation of twisting rotation of the box 
beam under a transverse load at the tip  
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The assumed loading is either a  unit transverse 
load (1.0 lb) applied at the free end, or a unit 
twisting moment (1.0 lb-inch) applied at the free 
end. The stacking sequence of the top and bottom 
walls is (45/45)3, while that of the left and right 
walls is (45/-45)3. The material properties of all 
layers are assumed to be identical and equal to those 
adopted in the previous example. The variation of 
the bending slope and twisting rotation along the 
length of the beam are plotted in Fig. 6 to Fig. 9 
along with the analytical and experimental results of 
Chandra et al. [2], and the finite element results of 
Stemple and Lee [17]. The results of the different 
methods are found to be in very good agreement.  
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Fig. 8.  Variation of bending slope of the box beam 
under a twisting moment at the tip  
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Fig. 9.  Variation of twisting rotation of the box 
beam under a twisting moment at the tip  

 

4 Conclusions  

A fully coupled beam element has been 
developed for the analysis of thin-walled laminated 
composite beams of open and closed cross sections 
including axial displacement, torsion, out of plane 
warping, bi-axial bending and transverse shear 
deformation. The constitutive equations of the beam 
element are derived analytically considering the 
coupling of all these modes of deformation. The 
resulting composite beam theory is applied to open I 
section and closed box section beams. The 
incorporation of transverse shear deformation 
demands a C0 formulation for the one dimensional 
finite element approximation of the bending 
deformations, while the torsional deformation 
demands a C1 formulation for the incorporation of 
out of plane warping. The difficulty in implementing 
both formulations in the present coupled problem is 
successfully overcome by adopting an efficient 
approach for the finite element approximation of the 
bending deformations. Numerical examples of 
composite open and closed section beams having 
different load and boundary conditions are analysed 
using the proposed element. The results obtained are 
compared with analytical, experimental and/or other 
finite element results available in literature, and the 
comparisons show a very good performance of the 
proposed fully coupled beam element. Some new 
results are also presented for future references. 
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