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Abstract  

This study is concerned with Resin Infusion  
Liquid Composite Molding processes such as 
Vacuum Assisted Resin Transfer Molding.  The 
Resin Infusion process has been effectively 
simulated using two models, one based on the 
conventional Darcy’s Law and one based on a 
height-averaged modified version of Darcy’s Law. 

The finite elements themselves are used as 
control volumes and a mass conservation technique 
is applied to improve the accuracy of fluid flux 
evaluation.  Elements at the flow front are 
temporarily subdivided to allow for convergence of 
the numerical scheme. 

It is found that the temporal height derivative 
is important and cannot be neglected if one is 
interested in an accurate simulation. Neglecting this 
term to form the quasi-static forms of the full 
governing equations significantly increases the mass 
balance error and can greatly reduce the mold fill 
time. 

. 
1 Introduction  

Liquid Composite Molding (LCM) processes 
are a family of advanced composite material 
manufacturing processes, gaining popularity in the 
aerospace, automotive and military industries. They 
include the hard-mold Resin Transfer Molding 
(RTM) and Injection/Compression Molding (I/CM) 
processes. One of the appeals of these processes is 
that, with their closed molds, harmful emissions are 
minimized. This study is concerned with the Resin 
Infusion flexible bag LCM processes such as 
Vacuum Assisted Resin Transfer Molding 
(VARTM). Here, a vacuum is generated within the  
mold and resin infuses in under pressure.  The 
external pressure can be applied to the flexible bag 
in a number of ways, for example through 
atmospheric pressure or due to contact with a 
pressurized fluid.  These Resin Infusion processes, 

with their relatively inexpensive molds, facilitate the 
production of large and complex geometries. 

There is a need for simulation of the infusion 
process as prototyping is expensive and control of 
the final thickness is important. The most common 
computational method of simulating LCM processes 
is the Control-Volume Finite Element Method which 
has been developed and tested extensively on RTM 
processes [1] and, to a lesser extent, for other LCM 
processes (e.g. [2]). An attractive  alternative 
method is one which uses non-conforming finite 
elements with a special modification to ensure mass 
conservation on the element level [3]. The finite 
elements play the part of the control volumes, thus 
simplifying domain discretisation and resin flow 
calculations at the flow front.  This method has been 
shown to be well suited to the I/CM process, in 
which thickness changes occur during the filling 
stage [3].  In this paper, the method is extended to 
deal with the more complex infusion processes. 

The thickness variation along the preform 
during filling plays an important role in this study.  
As such, what follows is most appropriate to Resin 
Infusion processes in the absence of distribution 
media, since thickness variations are not so 
prominent with such media. 
 
2 Formulation  

2.1 Governing Equations 

The continuity equation appropriate for a 
thickness-varying planar LCM process is  

( ) ( )
t
hh

∂
∂

−=⋅∇
φq , (1) 

where h is the thickness of the component, φ  the 
porosity and q the Darcy velocity.  With 
conservation of fibre mass, =hV f constant, fV  
being the fibre volume fraction, one has 
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The Darcy velocity is related to the fluid pressure p 
through Darcy’s law: 

p∇−=
μ
Kq , (3) 

where K is the permeability tensor and μ  is the 
fluid viscosity. 

Combining (2) and (3) leads to the governing 
LCM equation 

t
hph
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅∇

μ
K . (4) 

In this equation, the thickness h, pressure p and 
permeability K are coupled.  The thickness and 
permeability are related by an empirical equation of 
the form 

)(hKK ijij = , (5) 

for example the Carman-Kozeny relation. 
The fluid pressure is related to the stress fσ  

taken up by the fibrous preform and the (known) 
externally applied stress extσ  through Terzaghi’s 
relation,  

extf p σσ =+ . (6) 

In the infusion process, this external stress will 
usually be constant, for example the 
atmospheric pressure atmp .  The fibre stress and 
thickness are related by a constitutive law for the 
fibrous material, 

( )hff σσ = , (7) 

which is usually taken to be a non-linear elastic law, 
but can also express the viscoelastic properties of 
fibrous materials.  This expression incorporates the 
differences which occur when the perform is dry and 
when it is saturated – in the latter case giving lower 
stress values for a given thickness. 
 
2.2 Height Averaged Darcy Law 

Eqn. 3 is the standard form for Darcy’s law.  
However, in planar flows with thickness variations it 
could be argued that it is more appropriate to use a 

height-averaged form of Darcy’s law, which takes 
the height variation in any representative volume 
element into account: 

( )ph
h
∇−=

1
μ
Kq . (8) 

Some justification for this modification can be 
obtained from open-channel flow laws where, for 
example, force balance results in similar gradient 
terms as on the right hand side of Eqn. 8. 

The governing equation analogous to Eqn. 4 
in this case is 

( )
t
hph
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=⎟⎟
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∇⋅∇

μ
K . (9) 

  Both versions of Darcy’s law will be used in 
what follows; the standard version will be denoted 
by “SD” and the height-averaged version will be 
denoted by “AD”. 
  
2.3 Galerkin Finite Element Method 

Using the standard Galerkin Finite Element 
Method (GFEM), multiplying Eqn. 4 by a weight 
function  ω  and integrating over the fluid-filled 
region leads to 

dS
t
hdSph
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and an application of Green’s theorem leads to the 
weak form 
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(11) 

The (AD) weak form of Eqn. 9 is obtained in the 
same way. 

Discretising the three variables K,, ph ,  
with appropriate shape functions, e.g., 

∑= )()( xii Npxp , and evaluating the integrals 
over each element, which now involve the shape 
functions only, leads to a set of non-linear equations 
of the form 
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( ) ( )hFhChK ST =
∂
∂

+
t

, (12) 

where h is a vector of nodal heights and FCK ST ,,  
are, respectively, elemental stiffness, 
capacitance and flux vectors. 

Using a forward finite difference 
approximation for the height derivative, the resulting 
GFEM equations can be solved explicitly.   
However, in order to avoid instabilities and the 
necessity of ever-refining the mesh for convergence, 
it is necessary to solve the equations implicitly, 
using a backward difference approximation 

t
hh

t
h ttt

Δ
−

≈
∂
∂ Δ−

. (13) 

A Newton-Raphson approach can now be employed 
to solve Eq. 12.  In this case, in the construction of 
the elemental tangent matrix, hK ST ∂∂ / , the 
derivatives of the functions in Eqns. 5 and 7 are 
required. 
 
2.4 Conserved Mass Flux Evaluation 

The governing equations can be solved for h 
and hence K and p using, for example, linear 
triangular elements.  The flux q can then be 
evaluated from Darcy’s law, Eqn. 3 (SD) or 8 (AD).  
With linear elements this leads to a constant flux 

FEq   over each element.  An improved linear 
approximation aq  can be achieved by using a 
Taylor series expansion about the barycentre Bx  of 
the element, 

( )BBaa
B

xxqxqxq
xx

−∇+=
=

)()( . (14) 

One of the principle motivations for this approach is 
that it dispenses with the need for control volumes, 
allowing for accurate flux evaluation on the element 
level, by incorporating conservation of mass, 
particularly with non-conforming elements [4]. 

Assume that the flux behaves as for the 
lowest-order Raviart-Thomas element, 

⎥
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⎤
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+
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syt
sxr

a )(xq , (15) 

which ensures that, for each element edge, the 
normal flux is constant.  It follows that 

( ) ( )( )BaB
B
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x
q

xx

−⋅∇=−
∂
∂

= 2
1 . 

(16) 

Using the relation 

( ) qqq ⋅∇+⋅∇=⋅∇ hhh , (17) 

and locally ensuring conservation of fluid mass 
through Eqn. 2, one has 
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The quantity )( Ba xq  here can be taken to be the 
finite element (constant) solution for flux, FEq .  The 
second and third terms on the right hand side of Eqn. 
18 are relatively inexpensive to evaluate and can be 
viewed as “post-processing” correction terms to the 
direct finite element solution. 
 Eqn. 18 applies to both the standard (SD) 
and height-averaged (AD) Darcy’s law, with FEq  
evaluated, respectively, using Eqn. 3 and Eqn. 8.  
 
3 Solution Method 

3.1 Flow front conditions 

 Fig. 1 shows a typical perform cross-section 
at the flow-front.  Ahead of the flow front the 
preform is dry and maintains its equilibrium 
thickness, point c.  Behind the flow front the 
preform is wet, point a.  For a given fibre stress, the 
thickness at a will be less than at c, due to the 
wet/dry difference.  Competing with this is the 
additional fluid pressure behind the flow front which 
tends to increase the thickness there (see Eqn. 6).  
Any zone of partial saturation which might pertain 
between a and c is discounted and a sharp flow front 
is assumed, at b. 
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Fig. 1. Typical perform profile at the flow-front 
 
3.2 Solution Procedure 

One fixed grid of elements is generated at the 
start of the simulation.  The initial conditions are 
obtained using the quasi-static approximation  

0/ =∂∂ th , giving the height profile in the initially 
saturated region.  With the height known, the 
pressure and permeability can be evaluated through 
Eqns. 5-7.   The flow-front is then advanced using 
the Darcy velocity calculated from Eqn. 18.  
Temporary nodes are positioned at the new flow-
front thus obtained.  This is achieved by subdividing 
elements at the flow front into sub-elements, for 
example a triangular element into four sub-triangles 
(see, for example, [5]).  The thickness at these 
temporary flow-front nodes is set to that 
corresponding to a wet perform with zero fluid 
pressure, Fig. 2. 

 

 
Fig. 2. profile changes at the flow front 

 
 
The residual corresponding to the implicit  

Eqns. 12-13 is next calculated and an iterative 
improvement for the heights is obtained.  The 
procedure is repeated until convergence is achieved.  
The time-step can be altered dynamically depending 

on the number of Newton-Raphson iterations 
required for convergence.  The temporary flow-front 
elements are discarded as filling proceeds (as 
elements completely fill) and new temporary nodes 
are generated. 

 
3.3 Error Quantification 

A Resin Discrepancy Percentage (RDP) was 
calculated to indicate the difference between the 
volume of resin which had entered the mold and the 
volume which was actually in the mold. The RDP 
provided an indication of simulation error, and fell 
consistently with mesh refinement.  In all cases, the 
RDP was found to indicate more resin in the mold 
than there ought to be. 

 
4 Results and Discussion 

Simulations were run for a glass-fibre 
continuous filament mat (8 layers of CFM, density 
2.58 g/cm3, areal mass 450 g/m2, diameter 15μm), 
and the following data was used: 
 
The Carman-Kozeny relation 

2

32 )1(
16 f

f
ij V

V
k

dK
−

=  (19) 

was used for Eqn. 5 with 510−=d , 
310125.3 −×=k .  The elastic law 

n

f h
h

E ⎟
⎠
⎞

⎜
⎝
⎛= 0lnσ  (20) 

was used for Eqn. 7, where 0h  is the initial 
thickness.  For a dry perform, kPa125=E  and 

5=n .  For a wet perform, kPa55=E  and 6=n . 
 

4.1 Thickness profiles 

Figures 3 and 4 display thickness profiles for 
uni-directional filling of a m5.0m5.0 ×  preform 
with constant (atmospheric) injection pressure.  
Satisfactory convergence was achieved with 50 
element sub-divisions along the length of the mold.  
Fig. 3 displays profiles at 20s intervals for the 
standard Darcy law (SD) whilst Fig. 4 displays 
profiles at 3s intervals for the height-averaged law 
(AD). 
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Fig. 3. Thickness profiles during filling (SD) 
 
 

 
 

Fig. 4. Thickness profiles during filling (AD) 
 

Note the pronounced swelling effect in the case of 
the thickness averaged Darcy’s law.  Eqns. 3 and 8 
are, essentially, empirical laws, and which is the 
more appropriate can be determined only by 
carrying out suitable experiments and comparing 
with simulation results.  Experimental data for 
thickness profiles in infusion processes (in the 
absence of distribution media) is scarce.  The 
experimental data which is currently available to us 
lacks the required precision due to instrumentation 
inadequacies and can only be used in a cautious, 
qualitative, way. Nevertheless, the simulation results 
for thickness profiles do appear to mirror the trends 

of the experimental data.  Further experimental 
studies with a view to analyzing further the 
appropriateness of the AD model are underway at 
present. 

Fig. 5 illustrates the changing thickness of the 
preform at a location 0.15m from the inlet.  This 
typical profile shows the abrupt change from “dry” 
to “wet” as the flow-front passes and then the 
gradual increase in thickness due to increasing fluid 
pressure (and hence decreasing fibre stress). 

 

 
 
Fig. 5. Thickness profiles 0.15m from inlet 

 
4.2 Pressure Distributions 

The pressure distributions at the end of filling 
are shown in Fig. 6.  For the AD model, the pressure 
drops significantly near the flow front, producing a 
large negative pressure gradient and hence a large 
Darcy velocity.  This results in the low fill-time seen 
in Fig. 5.  In a substantial region near the inlet the 
pressure is close to the injection pressure and the 
pressure gradient is low. For the SD model, the 
gradient of the pressure distribution does not vary so 
much along the mould and is in fact quite similar to 
that predicted in constant-thickness RTM 
simulations. 

Note that, due to the non-linear nature of the 
fibre stress-strain relation, small increments in fluid 
pressure when the fibre is close to its free/unstressed 
height (and so fσ  is large)  result in much larger 
increments in fibre compression than when the fibre 
is already under some compression. 
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Fig. 6. Pressure distributions at completion of filling 
 
 
4.3 Quasi-Static Approximation 

A quasi-static approximation of the process can 
be made by taking 0/ =∂∂ th  in all expressions. The 
thickness profiles thus obtained are a very good 
approximation of those from the full transient 
simulation.  This can be seen from Fig. 7 (in which 
the SD model is used). 

 

 
 

Fig. 7. Comparison of height profiles for full and 
quasi-static simulations (SD) 

 
 However, the predicted fill-times are very 
different: whereas the full solution predicts a fill-

time of 700 (SD) or 144 (AD) seconds (see Fig. 5), 
the quasi-static solution predicts a fill time of 570 
(SD) or 68 (AD) seconds.  Further, relatively high 
RDP values result from the quasi-static method.  
This suggests that the temporal height derivative is 
significant and, although the neglecting of it reduces 
the simulation time considerably, it cannot lightly be 
discarded. 
 
5 Conclusions 

In this study, the Resin Infusion process has been 
effectively simulated.  Two models were used, one 
based on the conventional Darcy’s Law (SD) and 
one based a height-averaged modified version of 
Darcy’s Law (AD).  Which of these models is more 
appropriate is still open to question – further 
experimental work is required. 

The temporary node method used in the 
simulations replaces the conventional control 
volumes with the computational elements and uses a 
Taylor’s series expansion in elements at the flow 
front to approximate the flow front fluxes.  Elements 
at the flow front are allowed to expand as the resin 
saturates more of the fibre in the mould.  

The temporal height derivative is important 
and cannot be neglected if one is interested in an 
accurate simulation. Neglecting this term to form the 
quasi-static forms of the full governing equations 
significantly increases the mass balance error and 
can greatly reduce the mold fill time. 
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