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Abstract  

An efficient methodology to determine the 
probabilistic robustness of a Liquid Composite 
Molding processes on screen by coupling finite 
elements software with a stochastic method is 
described. A non-intrusive Stochastic Finite 
Elements Method, recently proposed by Berveiller 
[7], is used as the stochastic solver. Interest in the 
field of liquid composite manufacturing simulation is 
the possibility to predict influence of random 
parameters on the injection cycle time with an 
optimal number of simulations. 
 
 

1 Introduction  

Properties and performance of parts made from fibre 
reinforced composites depend on material, design 
and processing. Composite manufacturing 
technologies play an important role since during 
process one makes not only the part of the desired 
shape but also the material itself with specific 
properties. Variations in material properties will 
affect the composite part quality and mechanical 
performance but also the manufacturing process. 
Because polymer composites are heterogeneous, 
variations may occur at the constituent level i.e. 
fibre and matrix. Disturbances may happen also at 
an upper scale level and can affect variables such as 
ply orientation and thickness, fibre volume fraction 
and process-induced defects such as voids. Due to 
the inherent nature of the manufacturing technology 
and the raw materials, there will always be 
uncertainties in the manufactured part and in its 
mechanical behaviour. Although this paper only 
focuses on the stochastic modelling of a 
manufacturing process, methodology used to address 
this problem is very generic and was basically 
originated in stochastic structural mechanics.  

 
Liquid Composite Molding (LCM) consists in 

a variety of composite manufacturing processes that 
are capable of producing high-quality, complex-
shaped fibre reinforced composite parts. They are 
used mainly in the aerospace, automotive, marine, 
and civil industries. Among them Vacuum Assisted 
Resin Transfer Molding (VARTM) became more 
and more attractive because of the simplicity of 
mould manufacture and injection equipment 
required. In VARTM resin is drawn into the fibre 
preform and mould with vacuum pressure. Generally, 
fibre preform is put on a one-sided mould and is 
covered with a flexible top and vacuum sealed. A 
very porous fabric called distribution medium is 
placed on top of perform. The low viscosity 
catalysed resin is then introduced. The resin moves 
quickly through this layer, and then flows downward 
through the thickness of the fibre preform. This 
technology eliminates the need for expensive 
matched metal tooling and allows for the fabrication 
of large parts. It is often used with resins that cure at 
relatively low temperature. The main drawback of 
this process is the low pressure drop available for 
driving the resin into the mould. Then mould-filling 
time will be a relevant parameter that will be 
affected by the perform permeability and resin 
viscosity, the latter being controlled by the 
temperature and the polymerisation state. Since 
these parameters are not fully controlled in 
workshops, they may significantly fluctuate from 
batch to batch and zone to zone in the part. The fill 
time will be uncertain making the process difficult to 
qualify and optimise. One way to address that is to 
incorporate sensors in the mould and develop 
strategic controllers that will take appropriate 
control action to drive the process towards success. 
Strategic location, action mode and amount of 
sensors and controllers should result from a rigorous 
analysis of the uncertainties that can affect the 
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process. As a part and parcel of this, the following 
sections present a methodology to determine with an 
optimal number of simulations the probabilistic 
robustness of a process on screen by coupling finite 
elements software with a stochastic approach. 
Without loss of generality, the paper focuses on the 
influence of random parameters on the injection 
cycle time. 
 

2 Problem statements  

The part modeled in this paper is a 0.15 x 0.5m² 
rectangular plate, with a 0.1 m thickness. A non-
deformable insert (0.15 x 0.3 x 0.02 m3) is placed in 
the center of the part as presented in fig. 1.  
 
 
 
 
 
 
 

Fig. 1. Studied part 
 
The fiber preform is made of glass woven fabrics 
with a nominal permeability of 2.9x10-10 m² and a 
40% fiber volume fraction [10]. The injected resin is 
an unsaturated polyester, with a 0.22 Pa.s nominal 
viscosity. The resin viscosity is supposed to be 
constant during the whole injection. Distribution 
medium is placed on top of the preform, expected to 
cover the 0.39 m in the length direction. A 80% 
porosity value and a 1.0x10-8m² permeability are 
assigned to this material. A frontal injection is 
preformed from one side of the mold with a 0.1 MPa 
injection pressure; a vent line is drawn on the 
opposite downside of the mold. 
In the following sections, influence of variability of 
the preform permeability, resin viscosity and 
distribution medium length is studied, to account for 
operator change and temperature variations from one 
part manufacturing to another.  

3 Stochastic modeling 

3.1 General overview  

Introduction of randomness into the modeling 
of a physical phenomenon has received a large 
attention from the scientific community. Among the 
few available techniques, Monte-Carlo simulation is 
widely used because of its simplicity, in both theory 

and numerical implementation. However, such 
simulations only provide quantitative results and 
become very time-consuming when dealing with 
complex problems. 

In general, the Stochastic Finite Elements 
Method consists in the representation of the overall 
probabilistic response onto a basis of the vectorial 
space of real random variables with finite second 
moment (corresponding to physical systems with 
finite statistical fluctuations), namely the Polynomial 
Chaos (see [1] [8]). 
The method basically relies on two discretization 
procedures: 

• The first one deals with the geometrical 
definition of the problem and is similar to 
the discretization performed within a 
deterministic framework; 

• The second one is related to the 
discretization along the probabilistic 
dimension. 

A review of a few techniques for representing 
stochastic processes (also called random fields) can 
be found in [4] [5] for instance. Among these 
techniques, the series expansion methods (such as 
the Karhunen-Loève expansion [1], the Expansion 
Optimal Linear Estimation [2] or the Orthogonal 
Series Expansion [3]) seem to provide the most 
accurate results. An extended presentation of the 
spectral approach can be found in the book from 
Ghanem and Spanos [1]. However, the main 
drawback of such methods is that they basically 
require a tricky intrusive implementation within 
commercial Finite Elements codes and thus, they 
may become inappropriate when dealing with large 
and complex problems. 
Recently, two non-intrusive methods relying on 
deterministic computations have been proposed. In 
both cases, the overall stochastic response is 
expanded onto the Polynomial Chaos and is written 
as: 

( ) ( ){ }( )∑
∞

=
=ωξ=ω

0i

M
1kkiiaA~ Ψ  (1) 

where { }M
1kk =ξ is the set of standard normal 

random variables used in the expansion of the input 

random variables, { }∞
=0iiΨ  are the 

multidimensional Hermite polynomials and { }∞
=0iia  

is a set of coefficients to be determined. For 
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computational purposes, a truncated expansion is 
considered (for the sake of clarity, the order of 
truncation is not reported):   

( ) ( ){ }( )∑
−

=
=ωξ≈ω

1P

0i

M
1kkiiaA

~
Ψ  (2) 

The number of terms P involved in the 
representation is related to both the order of 
expansion p and the dimension M by the relation:  

( )
!p!M

!pM
P

+
=  (3) 

The two methods basically differ in the way the 
coordinates are computed: 

• In the method proposed by Puig et al. [6], 
the coefficients are determined by using the 
orthogonality of the Hermite polynomials 
with respect to the Gaussian probability 
measure. Such a method then yields a 
multidimensional integration that can be 
performed by Monte-Carlo numerical 
simulations. 

• In the methodology proposed by Berveiller 
[7], the coordinates are computed by 
considering a set of collocation points and 
by using a least square minimization method, 
resulting in a probabilistic regression 
method.  

The second method was used in this study and is 
further detailed in the next section.  
 

3.2 The probabilistic regression method   

The method can be divided into two main 
steps: 

• The first one consists in defining a mapping 
between the space of physical input data and 
the normed space. For each random 
variable, the mapping can be performed by 
using either an isoprobabilistic 
transformation or a polynomial expansion. 

• The computation of the coefficients 
involved in the Polynomial Chaos 
expansion. 

 

3.2.1 Expansion of the input random variables  
 

In this study, each input random variable is 
represented by a polynomial series expansion in a 
standard normal variable. 
 
Case of the distribution medium 
 
The length L of the draining material is modeled as a 
random variable uniformly distributed around its 
mean theoretical value 39.0L = . Its support is 
defined as[ ]40.0,38.0 . The length is written as: 

( ) ( )∑
∞

=

ξ≈ω

0i

ii HLL  (4) 

where the coefficients { }∞

=0iiL  are to be computed. By 

using the orthogonality of the polynomial basis, 
these coordinates are found to be [7] (see also [9]): 
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where 38.0=a and 40.0=b . Due to the 
singularities of the distribution, it is necessary to 
include many terms in the expansion [9], as shown 
on Fig. 2. 

 
Fig. 2. Comparison of the PDFs of the random 

length of draining material for different orders of 
expansion  

(Black: exact, blue: p=1, green: p=3, red: p=13). 
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Case of the bulk preform 
 
The permeability of the preform K is written as 

1010* −⋅= KK  and *K  is modeled as a Log-normal 
distributed random variable with parameters 

0509.1=λ  and 1684.0=ζ  (see [10] for the 
description of the experimental analysis).  
Then, one has: 

( ) ( )∑
∞

=

ξ≈ω

0i

ii H*K*K  (6) 

In the case of a Log-normal random variable with 
parameters( )ζλ, , the coefficients can be determined 
analytically and are given by (see [7]): 

( )
!i

5.0exp
*K

2i

i
ζ⋅+λζ

=  (7) 

Fig. 3 shows the PDFs, assessed by Monte-Carlo 
numerical simulations (100 000 realizations), for 
different orders of expansion (note that for the sake 
of clarity, the multiplicative factor is not reported on 
the plot). 
 

 
Fig. 3. Comparison of the PDFs of the random 

permeability of the bulk preform for different orders 
of expansion  

(Black: exact, green: p=1, blue: p=2, red: p=3). 
 
Case of the viscosity 
 
The viscosity is modeled as a Log-Normal 
distributed random variable with parameters  

5182.1−=λ  and 0907.0=ζ . The coordinates of 
the projection are computed by using Eq. (7). Fig. 4 
shows the PDFs for different order of expansion. 
 

 
Fig. 4. Comparison of the PDFs of the random 

viscosity for different orders of expansion  
(Black: exact, green: p=1, blue: p=2, red: p=3). 

 

3.2.2. Probabilistic regression 
 
The probabilistic regression method was introduced 
by Berveiller et al. [7] [11]. We recall that the aim is 
to compute the coefficients involved in the 
representation of the overall response of the system 
(see Eq. (1)).  
For that purpose, let us consider n outcomes of the 
random vector ξ  gathering the standard normal 
variables involved in the projection of the input 
random variables. By using the expansions detailed 
in the previous section, one then determines the n 
realizations of the input random variables. For each 
outcome, the overall response can be computed by 
using any commercial software. The method 
basically consists in determining the set of 
coefficients which minimize the quantity: 

( ) ( )( )[ ]
2n

1k

kk A
~

AA ∑
=

ξ−=∆  (8) 
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where ( ){ }n
1k

kA = is the set of deterministic results 

and the ( )( ){ }n

1k
kA

~
=ξ are the projections of the 

probabilistic response (see Eq. (1)).   
The collocation points are chosen as follows [7] [12] 
[13]: 

• for an expansion at the p-th order, we first 
compute the (p+1) roots of the (p+1)-th 
order Hermite polynomial; 

• all the vectors of length M are then 
computed by using all possible 
combinations of the roots; 

• the n combinations that maximize the 
Gaussian probability measure are finally 
selected.  

Note that a few parametric studies carried out by 
Berveiller (see [7]) tend to prove that 

( )P1Mn −=  provides accurate results. 
 

3.3 Results 

 
Once the coordinates of the stochastic 

parameters are determined, Monte-Carlo numerical 
simulations are performed in order to assess some 
statistical properties of the parameters. Note that 
since we have a complete representation of the 
probabilistic quantities in terms of standard normal 
random variables, these simulations are very cost-
effective compared to direct Monte-Carlo 
simulations.  
 

3.3.1. Statistical properties 
 
The deterministic computations are realized with 
LIMS, a finite element solver associated with a 
control volume approach to model injection of resin 
in a porous medium [14]. The 2D geometry 
implemented represents the middle plane of the part, 
cut along the flow direction as presented in fig. 5a.  
 
 

  
Inlet              Outlet 

a). 
 

 
 

 
 

b). 
Fig. 5. a). Simulation input b) Example of a Filling 

profile 
 
For each determinist simulation, preform 
permeability, resin viscosity and length of the 
distribution medium are implemented. Two different 
end conditions are then applied. For the first one, 
injection is completed when resin reaches the vent. 
Note that full injection is not guaranteed and that dry 
zones can be observed, as shown in Fig. 5b. 
Injection time t1 is then recorded. For the second 
one, injection is continued until the complete filling 
of the part. This simulation is characterized by the 
total injection time t2.  
The first set of calculations (60 computations) 
considers the Berveiller method [7]. For comparison, 
another set of calculations is conducted considering 
the Monte Carlo method (10 000 computations). 
Table 1 presents the statistical parameters. 
 

Table 1. Statistical parameters. 
Property Mean CV 

Time 1, t1 175.9 [s] 13% 
Time 2, t2 200.3 [s] 15% 

 
Figs. (6) to (9) show the PDFs and the empirical 
CDFs of the random parameters assessed by 10 000 
simulations.   
 

 
 

Fig. 6. Probability density function of t1. 
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Fig. 7. Cumulative distribution function of t1. 
 

 
 

Fig. 8. Probability density function of t2. 
 
 

 
 

Fig. 9. Cumulative distribution function of t2. 
 
Convergence rate  
 

A study on the convergence rates of some statistical 
properties was carried out. Figs. (10) and (11) show 
the convergence of some properties as a function of 
the number of collocation points used in the 
probabilistic regression. Note that the values are 
normed by the value obtained by converged results 
from the direct Monte-Carlo simulations 
(approximately 105 realizations)  
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Fig. 10. Convergence rates of the mean and standard 

deviation of t2. 
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Fig. 11. Convergence rates of the skewness and 

kurtosis coefficients of t2. 
 

3.3.2. Robustness 
 

For a given property (for instance, the total 
injected time t2) G, we define the associated measure 
of robustness as: 

( )0GGProb1R th
G >−−=  (9) 

where thG  denotes the theoretical (deterministic) 
value of the property. Since we have a representation 
of the probabilistic parameters, such measures can 
readily be obtained from direct Monte-Carlo 
simulations (approximately 105 realizations). Results 
for times t1 and t2 are presented in Table 2. 

Mean 

St. Dev. 

Skewness 

Kurtosis 
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Robustness values associated to both processing 
times are much lower than 1, which indicates that 
injection times are scattered and the process 
considered in this study has to be improved. 
 

Table 2. Measures of Robustness. 
Property Measure of Robustness 

Time 1, t1 0.49 
Time 2, t2 0.50 

 

4 Conclusion 

 
Sophisticated models for flow impregnation, heat 
transfer and resin viscosity and curing have been 
proposed and implemented in softwares. The ability 
of the digital simulation to mimic real situation 
depends on how well properties of interest are 
characterized at every location. Unfortunately, 
experience gained so far provides the evidence that 
material characteristics at a location sometimes are 
not repeatable from part to part and from zone to 
zone.  
A rigorous and efficient methodology has been 
presented in this paper to assess the probabilistic 
nature of a manufacturing process. Without loss of 
generality, it has been applied to the VARTM of a 
part where the mould filling time was the property of 
interest. Influence of random parameters on the 
injection cycle time has been predicted with an 
optimal number of simulations. This method can be 
used to optimize a manufacturing process and 
determine the optimum cycle time for instance. It 
can be also used to undertake sensitivity analysis to 
define random parameters that have the strongest 
influence on the process. Then one can implement a 
specific on-line and off-line control of these 
parameters to improve the stability of the 
manufacturing process. 
 
In this study random parameters (resin viscosity, 
preform permeability and length of the distribution 
medium) were modeled assuming that they are 
homogeneous over the corresponding part and thus, 
can be modeled by random variables. This problem 
can be avoided by representing the material 
properties as random fields. Further work is needed 
to construct relevant parametric or non-parametric 
probabilistic models associated to random properties 
of interest regarding the manufacturing process: 
preform permeability, resin viscosity, heat transfer, 
clearance between a fiber preform and the mould 

walls or inserts that will lead to disturbing race-
tracking effects during the filling stage. This work 
will provide a more realistic probabilistic modeling 
method for assessing robustness of the 
manufacturing process. 
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