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Abstract  

The finite element formulation based on 
enhanced first order shear deformation theory is 
developed to accurately and efficiently predict the 
behavior of laminated composite and sandwich 
structures. The enhanced first order shear 
deformation theory is systematically derived by 
minimizing the least-squared strain energy error 
between the first order theory and the higher order 
theory. This makes it possible implement finite 
element method based on the 0C  shape function by 
transforming the strain energy of a higher order 
zigzag theory to that of a first order zigzag theory. 
Thus, the proposed finite element formulation will be 
widely used in various application fields. Through 
numerical examples, the accuracy and robustness of 
the present method are demonstrated. 
 
 
1 Introduction  

Until now, various composite plate/shell 
models have been developed to analyze the 
composite and sandwich structures efficiently and 
accurately. Among many proposed models, a higher 
order zig-zag theory[1,2] is an efficient method to 
predict accurately deformations and stresss through 
the thickness of laminated structures. Higher-order 
zigzag theory(HOZT) satisfies  transverse stress 
conditions as well as displacement continuity 
conditions through the thickness of the laminates. 
HOZT was extended to weakly coupled and fully  

coupled thermo-electric-mechanical behavior of 
smart composite plates[3,4].  

HOZT requires only degrees of freedom 
defined at the reference plane and not requires layer-
dependent degrees of freedom. Thus this theory has 
computational advantage when thick multilayered 
composite structures are required to be analyzed. 
However, this higher order zig-zag theory requires 

1C shape functions(slope continuity condition along 
the boundary of the element) in the finite element 
implementation. These shape functions are not 
conventional in commercial finite element software. 
This unconventional shape function routine makes 
harder assemble this special zigzag plate element 
with other standard isoparametric elements. To 
overcome this drawback, an enhanced first order 
shear deformation theory(EFSDT)[5] is developed. 
It requires only 0C  shape functions in finite element 
formulation.  

In the present study, the developed finite 
element based on EFSDT is evaluated through 
several numerical examples. The accuracy and 
robustness of the present FE method based on 
EFSDT are demonstrated.  

 
2 Formulation of Enhanced First Order Shear 
Deformation Theory 

2.1 Displacement Formulation  

The general form of displacement field of the 
interior solution to describe the behavior of 
laminated plates can be expressed by  
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 3 3 3( ) ( ) ( )o

i iu x u x W xβ= +  (2) 
 
in which, ( )iW xα and 3( )iW x  represent warping 
functions. The in-plane displacement fields of 
higher order zig-zag theory are constructed by super- 
imposing linear zig-zag field to the smooth globally 
cubic varying field through the thickness. The final 
displacement fields are expressed in terms of the 
reference primary degrees of freedom by applying 
interface continuity conditions as well as bounding 
surface conditions of transverse shear stresses. The 
final displacement field is written as follows:  
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The warping functions are obtained by minimizing 
the errors between the averaged strain and 
displacement of the first order theory and the strains 
and displacement of higher order theory in the least-
square sense. This can be expressed as the following 
compact form. 
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The strains associated with the small displacement 
theory of elasticity are given by 
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and transverse shear strains are expressed as 
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The warping function 3W  presented Eq. (6) is very 
small compared to the effective transverse shear 
strains in the variational-asymptotic sense[4]. Then,  
transverse shear strains are expressed in terms of the 
effective shear strains ( )k

αφ  only.  
   

(0)
3 ,3 3( ) ( )x xα αγ γ βγ φ≅ Φ                           (7) 

 

2.2 Relationships between Variables of Higher 
Order Theory and Those of First Order Theory 

The warping functions are obtained by 
minimizing the errors between the averaged strain 
and displacement of the first order theory and the 
strains and displacement of higher order theory in 
the least-square sense. 
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The above equations (Eqs.8-12) minimize the 

errors of the in-plane stresses in the least-square 
sense. These equations can be also derived by 
transforming the three-dimensional strain energy of 
Eq.(13) into Reissner-Mindlin-like plate theory. 

The strain energy expression is given by 
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To utilize the variables of Reissner-Mindlin's plate 
model, the strain energy should be expressed by the 
form of Eq. (13). The Eq. (14) is obtained by 
substituting Eqs. (8)-(12) into Eq. (13) 
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After rearranging the energy expression of Eq. (14), 
the classified two kinds of energies are obtained as 
follows. 
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where the remaining energy is expressed as, 
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The strain energy can be expressed in terms of 

the conventional Reissner-Mindlin's variables by 
minimizing energy difference between HOZT and 
EFSDT. The effective transverse shear stiffness 
obtained from correlation equation is defined as 
follows. 
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2.3 Recovery Processing 

In this section, the recovery process after 
completing finite element solution process based on 
the enhanced first-order shear deformation theory 
(EFSDT) is described. The modified version of an 
efficient higher-order theory[1,2] is utilized for the 
analysis of laminated composite and sandwich 
structures. Three-dimensional strain energy per unit 
area is expressed in terms of the averaged strains. 
Explicit relations between three-dimensional and 
averaged displacement fields are derived via the 
least-square approximation of in-plane 
displacements, strains and stresses that are presented 
in previous section. 

Finally, in the post-processing phase, the final 
displacement fields are recovered by the following 
relationship. 
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The strain fields can also be recovered by 
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in which, the averaged nodal variables are obtained 
from results of commercial FE software ANSYS. 
The derivatives of nodal variables are calculated by 
using differential quadrature[7]. The differential 
quadrature method is very simple and efficient 
numerical approach to solve partial differential 
equations. The partial derivatives of a function with 
respect to a variable at any discrete point are 
approximated into weighted linear sums of the 
function values at all the discrete points in overall 
chosen domain. 
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where xN  is the number of grid points in the x-
direction and yN  in the y-direction. Numbers n and 
m represent the order of the derivatives with respect 
to x and y direction. ( )n

ijC  and ( )m
ijC  are weighting 

coefficients.  
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The summary of the proposed finite element 

procedure is given as follows: Firstly, the effective 
stiffness matrixes are obtained by considering the 
warping function dependent on the layer material 
and geometric properties. Secondly, after 
substituting the stiffness by the effective stiffness, 
the modeling and analysis of composite and 
sandwich structures is performed in ANSYS 
software. Lastly, the recovery procedures to get the 
detailed deformation and transverse stresses are 
carried out in the in-house code. 

 
2.4 Numerical Results  

The finite element formulation based on the 
EFSDT is performed by using ANSYS software. 
This software is applicable since it has ‘SHELL99’ 
element based on the 0C  shape functions. Through 
several numerical examples, the accuracy and 
robustness of the present finite element method 
based on EFSDT are demonstrated. 

The exact solutions for bending problem of 
cross-ply laminated plates proposed by Pagano[8] 
are used as the benchmark solution for the present 
theory. 

The ply material properties in cross-ply 
laminated plates are given as 
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 (27) 

 

where L denotes a fiber direction and T denotes a 
perpendicular direction to the fiber. For a sandwich 
plate shown in Fig. 6, the material properties of a 
face sheet are given by Eq. (28), and the core 
material properties[9] are taken as 
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The length-to-thickness ratios, 4S =  and 10S =  
value, are evaluated. The in-plane and transverse 
stresses are plotted. They are important in strength 
design of composite structures. 

 
Three cases are considered in the present examples.  

Case I: Eight-layer regular quadrilateral plate 
[90/0/90/0/0/90/0/90] with simply-supported bound-
ary condition along the edge under distributed 
uniform loading. 

The comparison of center deflection is shown 
in Table 1. It is confirmed that the results of the 
finite element based on the enhanced first order 
shear deformation theory (EFSDT) agrees very well 
with those of higher order zigzag theory(HOZT). 
The displacement of rectangular composite plate is 
shown in Fig. 1. In-plane stress xxσ through the 
thickness is depicted in Fig. 2. The comparison of 
the transverse shear stress is shown in Fig. 3. The 
discrepancy between EFSDT and FSDT is observed 
because EFSDT considered the warping function of 
higher order zig-zag theory. The results of the 
EFSDT are well correlated with that of higher order 
zig-zag theory. 

 
Case II: Eight-layer stiffened laminated 

composite panel [0/90/45/-45/-45/45/90/0] with 
clamped boundary condition at one side edge under 
uniform loading.  

The dimensions of the stiffened composite 
panel model are such that length a=20 m, width 
b=14 m and thickness h=1. Fig. 4 shows the out-of-
plane displacement contour of stiffened composite 
panel. Fig. 5 indicates that the conventional Mindlin/ 
Reissner type shell element considering shear 
correction factor of ANSYS software cannot predict 
accurately transverse shear stress through the 
thickness very well in angle ply case. But, EFSDT 
and its post-process recovery routine are capable to 
predict the detailed deformation and stress behavior 
through the thickness accurately. 
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Case III: A simply supported [0 / Core / 0 ]o o  

sandwich plate with the thickness of each face sheet 
equal to h/10 is considered to investigate a 
significant shear deformation effect. The uniform 
loading is distributed over the whole x-y plane. The 
results from EFSDT clearly indicate in-plane and 
transverse stresses. However, results of FSDT can 
not predict in detail. It is obvious that FSDT is not 
adequate in predicting the local response of 
sandwich plates.  

For more accurate prediction of the transverse 
shear stresses of sandwich plate, the effect of 
transverse normal deformation should be considered. 
The reason is that the core material of a sandwich 
plate is very flexible compared to the face sheet. The 
proposed method doesn’t consider the transverse 
normal effect. However, the proposed least-square 
method has a merit in that it always gives better 
results than the FSDT while it retains the same 
computational cost. 

 
3 Conclusions  

A finite element method based on the EFSDT has 
been developed to predict the behaviors of 
composite/sandwich plates in an efficient and 
accurate manner. To approximate the through-the-
thickness warping functions, the higher order zig-
zag displacement fields are modified. The key 
feature of the present paper is that the applicability 
of EFSDT on the commercial software is shown by 
using relationship between energies of the EHOPT 
and the averaged FSDT derived in the averaged least 
square sense. The accuracy and robustness of the 
present method have been demonstrated by 
comparing the present solutions with higher order 
zigzag theory solution and the three-dimensional 
elasticity solutions.for simply-supported laminated 
and sandwich plates. The FSDT severely 
underestimated the displacements and stresses, while 
an EFSDT has shown good agreements with exact 
elasticity solutions. Thus, the proposed finite 
element using ANSYS software is a proper method 
to accurately and efficiently analyze the laminated 
composite and sandwich structures without  
significant modifications from FSDT. 
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Table1. Center deflection 3u  under distributed loading 
S=a/h HOZT_FEM EFSDT ANSYS FSDT 

4 2.78 2.77 2.32 2.054 
10 1.025 1.025 0.96 0.915 

3 4
3 3 2u 100 /( )u E h Pa=  
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Fig. 1. Displacement contour of rectangular 

composite plate under uniform loading (S=4) 
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Fig. 2(a). In-plane stress xx 2

0/x x q Sσ σ=  under 
uniform loading 
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Fig. 2(b). In-plane stress xx 2

0/x x q Sσ σ=  under 
uniform loading 
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Fig. 3(a). In-plane stress xx 2

0/x x q Sσ σ=  under 
uniform loading 
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Fig. 3(b). Transverse shear stress zx 0/zx zx q Sσ σ=  

under uniform loading 
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Fig. 4. Displacement contour of stiffened laminated 

composite panel 
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Fig. 5(a). Transverse shear stress zx under uniform 

loading 
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Fig. 5(b). Transverse shear stress zy under uniform 

loading 
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Fig. 6(a). In-plane stress yy 2

0/y y q Sσ σ=  of 
sandwich plate under uniform loading 
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Fig. 6(b). Transverse shear stress zx 0/zx zx q Sσ σ=  

of sandwich plate under uniform loading 
 
 
 
 


