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Abstract  

Heat conduction in CNT composites is 
analyzed using three-phase model. A set of 
permissible functions are derived that satisfy the 
temperature and heat flux continuity condition 
across the interface using a computer algebra 
system. The temperature field is expressed by a 
linear combination of the permissible functions 
semi-analytically. An example is shown to depict the 
temperature field subject to uniform heat flux at 
infinity. Parametric study is possible with the CNT 
aspect ratio, the size of CNT and the thermal 
conductivity of each phase. 
 
 
1 Introduction 

CNT based composites are futuristic materials 
with high strength and high thermal/electrical 
conductivities [1]. However, despite its promising 
improvement over conventional FRP composites, 
experimental results show that heat conduction in 
CNT composites is disappointedly smaller than 
predicted values from conventional micromechanics 
theory. This difference is believed to be due to 
several factors such as the presence of thermal 
barriers between CNTs and the matrix or misaligned 
orientation of CNTs in the matrix phase. Because of 
the difficulty in analysis, no clear authoritative 
explanation has been established. The present paper 
attempts to investigate heat conduction in CNT 
composites using a three-phase model that satisfies 
the continuity conditions of the temperature and heat 
flux fields across the boundary. A CNT is modeled 
as an ellipsoidal inclusion, surrounded by an 
interphase (thermal barrier) material of ellipsoidal 
shape and an infinitely extended matrix phase 
beyond that. A set of permissible functions that 
satisfy the homogeneous boundary condition and the 
heat-flux/temperature continuity conditions across 
each interface are derived. The temperature field in 

the CNT composite is expressed by a linear 
combination of the permissible functions. The 
effects of the interphase properties as well as the 
geometrical shape of CNTs on the heat conduction 
are assessed. 
2 Formulations 
The energy equation fot the temperature field, u , 
under steady-state heat conduction is expressed as 

0Lu = ,  (1) 
where L  is a differential operator defined as 

( )( )Lf K f≡ ∇ ⋅ ∇ .  (2) 

The quantity, K , is the thermal conductivity, ∇ ⋅  is 
the divergence operator and ∇  is the gradient 
operator. Equation (1) along with the prescribed 
boundary condition constitutes a boundary value 
problem. 

A CNT is modeled as an ellipsoidal inclusion 
coated by a thermal barrier of ellipsoidal shape in an 
infinitely extended matrix phase. Each ellipsoid is 
expressed by 
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where ia , ib  and ic  are the lengths of the axis for 
each ellipsoid.  
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Fig. 1. Three-phase model 

 
In order to obtain the temperature field in such 

a medium, a set of admissible functions for each 
phase is introduced as 
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where 1( )f x y z, ,  is a polynomial function for the 
CNT phase, 2 ( )f x y z, ,  is a polynomial function for 
the thermal barrier phase and ( )mf x y z, ,  is a 
function for the matrix phase that vanishes at 
infinity. The indices, 1, 2 and m, refer to the CNT 
phase, the thermal barrier phase and the matrix 
phase, respectively.  

The unknown coefficients, ijka , ijkb  and ijkc  are 
determined in such a way that they satisfy the 
following continuity conditions at each interface: 

1 2f f= ,  (7) 
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2 mf f= ,  (9) 
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Equations (7)-(8) are at the interface of the 

CNT and the thermal barrier and equations (9)-(10) 
are at the interface of the thermal barrier and the 

matrix. Using a computer algebra system, it is 
possible to obtain the explicit forms of 1f , 2f  and 

3f  with all the parameters present. 
When the CNT composite is subject to uniform 

heat flux at infinity (far field), the unknown 
temperature field, u , can be expressed as 

( )
N

u c f xα α

α
= ⋅ + ,∑X x  

(11)

where f α  is an α -th admissible function defined 
for each phase (consisting of three different 
functions, 1f

α , 2f
α  and mf

α ) and X  is a constant 
temperature gradient at infinity defined as 

u x≡ ∇ → ∞.X  (12)
  
From equation (11), 

u c fα α∇ = + ∇ .∑X  (13)

 
By taking the average over the entire composite, 

1 1
V V

udV c f dV
V V

α α∇ = + ∇ ,∑∫ ∫X  
(14)

 
so for the average of u∇  to be equal to X , the 
following has to be satisfied 

1lim 0
VV

f dV
V

α

→∞
∇ = ,∫  

(15)

This is automatically satisfied as f α  is chosen to 
vanish as x → ∞ .  

Now apply L  on the both sides of equation 
(10) to get 

( )
0

Lu L c Lfα α= ⋅ +
=

∑X x  
(16)

or 

( )c Lf Lα α = − ⋅ .∑ X x  (17)

Multiply f β  on the both sides of the above to get 

( )c Lf f L fα α β β⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, = − ⋅ , ,∑ X x  (18)

where ( )f g,  is defined as 

( ) ( ) ( )
V

f g f x g x dV, ≡ .∫  (19)

By defining 
( ) .a Lf f b L fα β α

αβ α
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≡ , , ≡ − ⋅ ,X x  (20)

Equation (16) is converted to an algebraic equation 
as 

A = ,c b  (21)
where 
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and 
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where the fact that mf  vanishes at infinity was used.  
Therefore, by solving a set of algebraic equations, 
(21), the temperature field can be expressed by 
equation (11). 

The effective thermal conductivity, k∗ , of 
general heterogeneous materials is expressed as 

1
( )

N
m i m

i i
i

k k v k k A∗

=

= + − ,∑  
(24)

where mk  is the matrix thermal conductivity, ik  is 
the thermal conductivity for the i -th phase, iv  is the 
volume fraction for the i -th phase and iA  is the 
temperature gradient proportionality factor defined 
as 

(in the i th phase) iu A u∇ − = < ∇ >,  (25)

where u∇  is the temperature gradient in the i -th 
phase and < . >  denotes the volume averaged 
quantity. Equation (24) implies that if the 
temperature gradient field inside a CNT is known, 
the effective thermal conductivity can be computed 
using equation (24). 
 
3 Example 
 

The expressions for permissible functions are 
too lengthy to be included in this paper. The 
following are examples of permissible functions for 
a 2-D elliptical shaped CNT/barrier embedded in the 
2-D matrix phase extended to infinity: 
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where t  is the aspect ratio of the ellipses, a  is the 
minor axis of the first ellipse and sa  is the minor 
axis of the surrounding ellipse  

The obtained permissible functions are used in 
equations (22) and (23) to compute the elements of 
aαβ  and bα . The following integral formulas were 
used. 
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where 
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where 
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1 x y
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(31)

and ( 1)nΓ ,  is the incomplete Gamma function.  
Figure 2 shows the temperature distribution 

inside the CNT, The thermal conductivity for the 
CNT, the thermal barrier and the matrix are chosen 
as 3,000 W/mk, 12 W/mk and 0.2 w/mk, 
respectively [3]. The aspect ratio of the CNT is 
chosen as 300. 
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Fig. 2. Temperature distribution around CNT 

 
It is found that the temperature field is not 

influenced by the aspect ratio of the CNT as long as 
the ratio is over 100. With the difference of thermal 
conductivities between the CNT and the matrix over 
6,000 times, the temperature inside the CNT is 
almost flat and variation of the temperature is seen 
in the thermal barrier phase. 
 
4 Conclusions  
 

The temperature field of carbon nanotube 
composites with a thermal barrier was derived with 
the permissible functions that satisfy the interface 
continuity conditions exactly. The effective thermal 
conductivity of such a composite can be evaluated 
using the approach in this paper. Although the CNT 
was modeled as an ellipsoid surrounded by another 
ellipsoidal coating barrier, a tubular shape is close to 
the real CNT composite. 
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