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Abstract  

In the present study, the influence of the 
uniformity of geometric fiber arrangement on the 
mesoscopic fracture behavior was analytically 
investigated for the unidirectional fiber-reinforced 
composites. A Monte Carlo simulation of the 
mesoscopic fracture process is performed using the 
modified shear-lag analysis method for polymer 
matrix composites and ceramic matrix composites. 
The overall fracture load and the mesoscopic 
fracture process are compared between the uniform 
and non-uniform fiber arrangements. Secondary, the 
difference in the effect of the fiber arrangement 
uniformity is discussed between polymer matrix 
composites, which have the low modulus matrix, and 
ceramic matrix composites, which have the high 
modulus matrix. 
 
 
1 Introduction  

The mesoscopic fracture events, such as the 
fiber breakage, matrix cracking and interfacial 
debonding, and their mechanical interactions 
determine the macroscopic fracture properties and 
morphology of the fiber-reinforced composite 
materials [1]. The non-uniform fiber arrangement, 
which is usually formed in fabrication, is suggested 
as one of the influential factors on the mesoscopic 
fracture behavior [2]. 

Yurgartis [3] developed the quantification 
method of the fiber spatial distribution using the 
image analysis. Milani et al. [4] developed the rough 
characterization method of the change in the fiber 

misalignment angles and their distribution during 
deformation for textile composites. Experimentally, 
Piggott [2, 5] reviewed that the fiber waviness 
greatly affects the macroscopic fracture properties in 
the unidirectional fiber reinforced composites. 
Friedrich [6] demonstrated that the volume fraction 
of voids existing at the fiber rich parts strongly 
affects the shear strength in the continuous glass 
fiber-reinforced polypropylene composites. 
Ramamurty et al. [7] investigated the effect of the 
local fiber volume fraction on the strength variability 
in the metal matrix composite (MMC). Analytically, 
Brockenbrough et al. [8] calculated the effect of the 
geometrical fiber arrangement on the stress 
distribution and matrix yielding in MMCs. Fiedler et 
al. [9] calculated the effect of the local fiber volume 
fraction on the initial matrix failure in the polymer 
matrix composites (PMCs) under the transverse 
loading. Ochiai et al. [10, 11] demonstrated that the 
non-uniform fiber spacing reduces the tensile 
strength in MMCs, using the conventional shear-lag 
analysis method. 

The strength of the unidirectional fiber-
reinforced PMCs in the fiber direction is one of the 
most important and fundamental data. Hence, the 
authors experimentally investigated the influence of 
the fiber arrangement uniformity on the fiber-
direction tensile strength and the fracture 
morphology using the unidirectional fiber-reinforced 
model PMC composed of 20 carbon fibers and 
epoxy resin [12]. Since the mesoscopic fracture 
behavior is essential for the determination of the 
macroscopic fracture properties in the composite 
materials, it is important to describe the change in 
the mesoscopic fracture behavior induced by the 
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difference in the geometrical fiber arrangement in 
detail. 

In this study, the influence of the non-uniform 
fiber arrangement on the mesoscopic fracture 
behavior was analytically investigated for the 
unidirectional fiber-reinforced composites. A Monte 
Carlo simulation of the mesoscopic fracture process 
was performed using the modified shear-lag analysis 
method [13-16]. In order to generalize the 
understanding, the simulated mesoscopic fracture 
behaviors were compared between PMCs, which 
have the low modulus matrix, and ceramic matrix 
composites (CMCs), which have the high modulus 
matrix. 
 

2 Analytical Procedure 
The simulation has an advantage in the 

parametric study over the in-situ experiment. Thus, a 
Monte Carlo simulation of the mesoscopic fracture 
process of the unidirectional fiber-reinforced 
composite materials was carried out in this study. A 
two-dimensional calculation model was used in this 
study, as shown in Fig. 1. This model is composed 
of the small fiber-, matrix- and interface- elements. 
The stress redistribution induced by the initiation, 
propagation and accumulation of the mesoscopic 
fracture events was calculated under the tensile 
loading by means of the modified shear-lag analysis. 
Details of the simulation procedure are shown 
elsewhere [1]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Consignation of calculation model for 

application to the modified shear-lag 
analysis 

 
 
 
 
 
 
 
 
 
 
 
 
   (a) S-U model                (b) S-NU model 
Fig. 2. Modeling for simulation of mesoscopic 

fracture behavior 
 

Fig. 2 shows the simulation models for the 
uniform and non-uniform fiber arrangements (S-U 
and S-NU models, respectively). Here, S stands for 
"Simulation", U for "Uniform" fiber arrangement 
and NU for "Non-Uniform" fiber arrangement. The 
10 fibers are arranged uniformly in the S-U model 
(Fig. 2 (a)). On the other hand, the S-NU model has 
one central matrix rich part, which is surrounded by 
the locally uniform parts composed of 5 fibers (Fig. 
2 (b)). The fiber spacing in the locally uniform parts 
of the S-NU model was taken to be the same as that 
in the S-U model, in order to individualize the 
influence of the central matrix rich part. In this study, 
a two-dimensional calculation model was used for 
the simplification. In this case, the matrix is 
continuous in the real composites, whereas separated 
by fibers in the transverse direction in modeling. 
Therefore, the stress concentration induced by 
matrix cracking is relaxed by the stress shielding by 
fibers in simulation. The accentuation of the stress 
concentration induced by matrix cracking is 
necessary to avoid the relaxation of the stress 
concentration by the stress shielding by fibers. 
Hence, the width of the central matrix rich part in 
the S-NU model, dm,n, was assumed to be 20 times 
thicker than the fiber spacing in the locally uniform 
parts, dm,u. 

In this study, PMCs and CMCs are subjects for 
simulation, in order to investigate how the effect of 
the fiber arrangement uniformity on the mesoscopic 
fracture behavior is affected by the change in the 
elastic modulus of matrix. The models for the 
uniform and non-uniform fiber arrangements in 
PMCs are named as the S-PU and S-PNU models, 
respectively. Here, P stands for "Polymer" matrix 
composites. In the same way, the models for the 
uniform and non-uniform fiber arrangements in 
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Table 1. Values employed for simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CMCs are named as the S-CU and S-CNU models, 
respectively. Here, C stands for "Ceramic" matrix 
composites. The model size and the mechanical 
properties of fiber, matrix and interface employed in 
this study are listed in Table 1. The distribution of 
fiber strength was assumed to follow the two-
parameter Weibull distribution. The size effect on 
matrix strength was taken into account using the 
following formula [16]. 

( ) m1/
m 0,m m,u m/

m
d d=σ σ  (1) 

Here, σm and dm are the strength and the width 
of each matrix element, respectively, σ0,m is the 
strength of the matrix elements in the locally 
uniform parts, and mm is the Weibull's shape 
parameter of matrix strength. The details for the 
reasons to determine these values for PMCs (S-PU 
and S-PNU models) are shown elsewhere [12]. For 
CMCs (S-CU and S-CNU models), the elastic 

modulus of SiC sintered body was employed as the 
matrix elastic modulus. This is because SiC sintered 
body is often used as matrix for CMCs. The matrix 
fracture strain in the S-CU and S-CNU models was 
assumed as the same as that in the S-PU and S-PNU 
models, in order to individualize the influence of the 
matrix elastic modulus. For the simplification, the 
initial residual stresses were neglected. 

In this study, the fiber element neighboring to 
the matrix rich part was assumed to be broken first 
in the center for the non-uniform (S-PNU and S-
CNU) models, in order to directly evaluate the effect 
of the fiber breakage on the fracture in the matrix 
rich part. In the actual calculation, this fiber element 
was precut in modeling. The same distribution of 
fiber strength, including the initial fiber breakage, 
was also used for the uniform (S-PU and S-CU) 
models, for comparison. Simulation for each model 
was carried out 10 times using different series of 
random values, and therefore fiber strength 
distribution [17]. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Normalized stress values of matrix- and 

interface- elements adjacent to precut fiber 
element for S-PU model 
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3 Results and Discussion 

3.1 Difference in Mesoscopic Fracture Behavior 
of PMCs 

Fig. 3 shows the calculated stresses of the 
matrix elements (tensile stress) and interface 
elements (shear stress), adjacent to the precut fiber 
element, at the overall strain of 0.50 % for the S-PU 
model. In order to make the comparison easier, the 
stress value of each element is normalized by the 
fracture strength value of each element. In this case, 
each element ca  n be considered to be broken when 
the normalized stress value exceeds the critical value 
(1.00). Here, the normalized stress values are 
indicated in the square. In the S-PU model, the 
normalized stress values of interface elements are 
higher than th  ose of matrix elements. This indicates 
the initial fiber breakage induces the interfacial 
debonding with priority to the matrix cracking, in 
the S-PU model. Fig. 4 shows the representative 
snapshots of the simulated fracture process for the S-
PU model. Here, the red line means the overall 
fracture surface. Except for the initial fiber breakage, 
no fracture occurred up to the overall strain of 
0.58 %. Then, other fiber elements broke one after 
another with increase in strain. Fiber breakage often 
led to the interfacial debonding, and the debonding 
length increased gradually with increase in strain. 
Finally, fiber breakage, matrix cracking and 
interfacial debonding were connected each other, 
resulting in the overall fracture of the composite. 

Fig. 5 (a) shows the calculated normalized  
stress values of the matrix elements (tensile stress) 
and interface elements (shear stress), adjacent to the 
precut fiber element, at the overall strain of 0.50 % 
for the S-PNU model. The analysis indicated that the 
normalized stress value of the matrix element 

adjacent to the precut fiber at the matrix rich part 
was about twice of that in the S-PU model. This is 
due to the stress concentration and the size effect. 
This resulted in the rather low fracture strain of 
0.50 % for the matrix rich part in the S-PNU model. 
Then, the stress redistribution was calculated with 
introducing the matrix crack at this matrix rich part. 
As a result, the normalized stress value of the 
opposite side matrix element exceeds the critical 
value, as shown in Fig. 5 (b). By repeating this 
procedure, the matrix crack propagated into the 
neighboring matrix elements successively at the 
same strain. Consequently, the matrix in the S-PNU 
model failed on the same transverse section where 
the fiber element had been precut.  
 
 
 
 
 
 
 
 
 
 

(a) Before matrix crack propagation 
 
 
 
 
 
 
 

(b) After matrix crack propagation 
Fig. 5. Normalized stress values of matrix- and 

interface- elements adjacent to precut fiber 
element for S-PNU model 
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Fig. 6. Snapshots of simulated fracture process for S-PNU model 
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Table 2. Simulated overall fracture load 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 shows the representative snapshots of 
the simulated fracture process for the S-PNU model. 
The fracture of the matrix elements was followed by 
the fiber breakage that occurred one after another 
with increase in strain. Here, the length of interfacial 
debonding associated with fiber breakage was about 
twenty elements (10 mm). This was much longer 
than that associated with the matrix cracking (5 
elements, 2.5 mm). Finally, fiber breakage, matrix 
cracking and interfacial debonding were connected 
each other at overall section of the model. These 
simulated final fracture patterns of the S-PU and S-
PNU models agree well with the experimentally 
observed fracture patterns of the unidirectional fiber-
reinforced model PMCs [12]. 

Table 2 summarizes the simulated fracture load. 
The average values of the simulated fracture load 
were 0.87 N and 0.88 N for the S-PU and the S-PNU 
models, respectively. The difference in the simulated 
fracture load between S-PU and S-PNU models was 
within the scatter. The standard deviation of the 
fracture load for the S-PNU model, 0.023 N, was 
lower than that for the S-PU model, 0.032 N. These 
tendencies are also corresponding to those of the 
experimental results, where the non-uniform fiber 
arrangement does not affect the average value of the 
fracture load and reduces the standard deviation of 
the fracture load in the fiber-reinforced model PMCs  
[12]. 

Thus, the results of a Monte Carlo simulation 
indicate that the non-uniform fiber arrangement 
enhances the fiber-breakage growth towards the 
matrix rich part on the same cross section. However, 
the fracture load is insensitive to the fiber 
arrangement uniformity. This is caused by the 
extremely high ratio of elastic modulus and strength 

of fiber to those of polymer matrix. Since matrix 
carried almost no load, the matrix cracking did not 
cause the stress concentration enough to cause the 
fiber breakage. As a result, the difference in matrix 
cracking was not reflected in the overall fracture 
load of the composites. 
3.2 Comparison between PMCs and CMCs on 
Fracture Behavior 

Figs. 7 and 8 show the calculated normalized 
stress values of the matrix elements (tensile stress) 
and interface elements (shear stress), adjacent to the 
precut fiber element, at the overall strain of 0.50 % 
for the S-CU and S-CNU models. Similarly to the 
case of PMCs, the stress concentration at the matrix 
rich part in the S-CNU model resulted the matrix 
failure on the same transverse section where the 
fiber element had been precut. 

Figs. 9 and 10 compare the difference in the 
simulated fracture process between the S-CU and S-
CNU models. In the S-CU model, the fiber elements 
were broken independently. Consequently, the 
interfacial debonding and matrix cracking were 
induced by the fiber breakage. Finally, the 
accumulation of these mesoscopic fracture events 
resulted the overall fracture. On the other hand, the 
almost all fiber was broken on the transverse section 
close to the section where the matrix crack was 
initiated by the precut fiber element, in the S-CNU 
model. Table 2 also summarizes the simulated 
fracture load for the S-CU and S-CNU models. The 
average value of the simulated fracture load in the S-
CNU model (1.00 N) was lower than that in the S-
CU model (1.15 N). 

In the case of CMCs, matrix carries higher load 
because of its high elastic modulus. Therefore, the 
redistributed stresses in the surrounding elements by 
the matrix crack for CMCs are higher than those for 
PMCs. In the S-CU model, the fiber elements were 
broken independently, because the stress 
concentration induced by the matrix cracking was 
not high. In the S-CNU model, the matrix rich part 
was first broken, and consequently the propagation 
of the matrix crack induced the breakage of weak 
fiber elements, which existed close to the matrix 
cracking section. This results the low overall 
fracture load in the S-CNU model. 

In conclusion, the non-uniform fiber 
arrangement changes the mesoscopic fracture 
process, nevertheless does not affect the overall 
fracture load, in PMCs. On the other hand, the 
overall fracture property of CMCs is sensitive to the 
fiber arrangement uniformity. This means PMCs   

No. S-PU S-PNU S-CU S-CNU
1 0.84 0.85 1.22 0.93
2 0.9 0.88 1.31 1.17
3 0.84 0.87 1.25 1.06
4 0.92 0.9 1.26 1.15
5 0.92 0.93 1.29 1.11
6 0.84 0.85 1.16 0.88
7 0.84 0.89 1.26 0.95
8 0.87 0.89 1.25 0.99
9 0.87 0.89 1.31 1.04

10 0.84 0.84 1.18 1.14
Ave. 0.87 0.88 1.25 1.04
S.D. 0.032 0.023 0.047 0.096

COV (%) 3.7 2.6 3.8 9.2

Fracture load (N)
PMC CMC
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have the smart structure and CMCs need the precise 
control of the fiber arrangement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Normalized stress values of matrix- and 

interface- elements adjacent to precut fiber 
element for S-CU model 
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Fig. 10. Snapshots of simulated fracture process for S-CNU model 

Fig. 9. Snapshots of simulated fracture process for S-CU model 

Fig. 8. Normalized stress values of matrix- and
interface- elements adjacent to precut fiber
element for S-CNU model 

(a) Before matrix crack propagation

(b) After matrix crack propagation
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4 Conclusions 
In this study, the influence of the non-uniform 

fiber arrangement on the mesoscopic fracture 
behavior was investigated analytically for the 
unidirectional fiber-reinforced composites. The 
results are summarized as follows. 
(1) Although the difference in the overall fracture 
load is insensitive to the fiber arrangement 
uniformity, the order of mesoscopic fracture process 
is different between the models with the uniform and 
non-uniform fiber arrangements, in PMCs. 
(2) The simulation indicates that the non-uniform 
fiber arrangement enhances the fiber-crack growth 
towards the matrix rich part on the same cross 
section. 
(3) In CMCs, the overall fracture load is sensitive to 
the fiber arrangement uniformity. This indicates the 
fabrication of CMCs needs the precise fiber 
arrangement control. 
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