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Abstract 

 
In this article, a novel element-failure method 

(EFM) is proposed for modeling the progressive 
failure of pin-loaded composite joints. The basic 
concept of EFM is that only the nodal forces are 
modified to reflect changes in the load-bearing 
capability of the damaged finite elements. Instead of 
the conventional contact algorithm, a more 
convenient method is provided using the EFM to 
solve the contact problem between the composite 
hole edge and pin surface. In conjunction with the 
Tsai-Wu (TW) failure theory and a more recent 
micromechanics-based strain invariant failure 
theory (SIFT), the EFM is used to predict damage 
initiation and propagation in composite laminates. 
Comparisons are also made with the more 
commonly used material property degradation 
method (MPDM). It has been shown that a good 
agreement between numerical predictions and 
experimental results can be obtained by SIFT-EFM 
for three typical failure modes of pin-loaded 
composite joints. 
 
 

1 Introduction  

Fastened joints are commonly used for 
assembling structural components in aircraft 
industry, which form weak points in the structures. 
The anisotropy and inhomogeneity of composites 
make the prediction of the ultimate strength of 
fastened composite joints very difficult. Damage in 
fastened composite joints can initiate at an early 
loading stage due to the stress concentration at the 
hole and accumulate and propagate inside the 
composites as the external load increases, eventually 
leading to ultimate failure. 

Depending on the relative dimensions of the 
laminate and bolt, there are in general three basic 
failure modes related to fastened composite joints: 

net-tension, shear-out and bearing [1,2]. The 
ultimate strengths of the joints are related to the 
materials, lay-ups, joint configurations, as well as 
bolt material, washer size, etc. [3]. Progressive 
failure models have been used by several authors [4-
12] for strength analysis of fastened composite 
joints. By combining failure criteria and the material 
property degradation method (MPDM), the 
progressive failure models can reasonably predict 
final failure modes and ultimate failure load. The 
MPDM assumes that a damaged material can be 
replaced by an equivalent material with degraded 
properties. However, the stiffness matrix of the 
composites needs to be reformulated and inverted 
after modifying material properties of damaged 
elements, which is a computationally intensive 
process. There is also a possibility that by reducing 
the material properties, the stiffness matrix of the 
damaged element becomes ill-conditioned and 
convergence to a solution is not assured. 

In this article, a novel FE-based element-failure 
method (EFM) is proposed for the modeling of 
progressive failure of fastened composite joints. The 
basic concept of EFM is that only the nodal forces 
are modified to reflect changes in the load-bearing 
capability of the damaged elements. Because the 
stiffness matrix remains unaltered, there are no 
computational problems associated with the MPDM. 
Another consequence is that there should be savings 
in computational effort since no reformulation of the 
stiffness matrix with damage progression is 
involved; each change in the damage state is 
modeled by appropriately modifying the nodal 
forces only. A recently proposed micromechanics-
based failure theory, strain invariant failure theory 
(SIFT) [13], is used together with the EFM to 
determine damage initiation and propagation. In 
combination with a simple nodal force modification 
scheme, the SIFT–EFM approach takes into account 
mechanisms that bridge micro- and macro-length 
scales. In order for comparison, failure analysis of 
fastened composite joints is also performed using the 
well-known Tsai-Wu failure theory and the 
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traditional material property degradation method 
(MPDM). 

In fastened composite joint problems, contact 
between the composite hole edge and pin surface is 
important and contributes significantly to the failure 
process. It is also demonstrated in this article that 
EFM can be an alternative to conventional contact 
algorithms for solving this contact problem. 
 

2 Damage modeling techniques 

2.1 Concept of the EFM 

The idea and assumption of EFM is that the 
effects of damage on the mechanical behavior can be 
essentially described by the effective nodal forces of 
a finite element (FE). It was first developed for 
dynamic fracture in metals [14], but the modified 
EFM was used for impact damage in fiber-
reinforced composites [15], damage progression in 
quasi-statically loaded three point bend composite 
laminates [16] and ultimate strengths of open-hole 
tension composite laminates [17]. The manner by 
which these effects due to damage translate to the 
effective nodal forces will in general depend upon 
the damage evolution law appropriate to the local 
mode of damage experienced by the composite 
material, as well as the finite element formulation 
[18].  

Fig. 1(a) shows an FE of an undamaged 
composite material, subjected to a set of internal 
nodal forces, which have been obtained from the FE 
solution. On the other hand, a piece of damaged 
composite material, perhaps containing microcracks, 
will have its load-bearing capacity reduced, very 
likely in a directionally and spatially dependent 
manner. If much of the damage consists of 
transverse matrix microcracks, it is reasonable to 
assume that the FE of the damaged material will 
have reduced load-bearing capacity in the direction 
transverse to the fibers (Fig. 1(b)). In conventional 
material property degradation schemes, this 
reduction is achieved by reducing or zeroing certain 
pertinent material stiffness properties of the 
damaged finite element. In the EFM however, the 
reduction is effected by applying a set of external 
nodal forces such that the nett internal nodal forces 
of elements adjacent to the damaged element are 
reduced or zeroed (the latter if complete failure or 
fracture is implied (Fig. 1(c)). The decision whether 
to fail an element is guided by a suitable failure 
theory and in each step. The required set of applied 
nodal forces to achieve the reduction within each 

step is determined by successive iterations until the 
nett internal nodal forces (residuals) of the adjacent 
elements converge to the desired values. Note that it 
is not the internal nodal forces of the damaged 
element that is zeroed (for the case of complete 
failure (Fig. 1(c)), but the nett internal nodal forces 
of adjacent elements. The EFM leaves the original 
(undamaged) material stiffness properties 
unchanged, and is thus computationally efficient 
since each iteration is simply an analysis with an 
updated set of applied nodal forces. Hence, no 
reformulation of the FE stiffness matrix is necessary. 

 

 
Fig. 1. (a) FE of undamaged composite with internal 

nodal forces. 
(b) FE of composite with transverse matrix 

cracks. Components of internal nodal 
forces transverse to fiber direction are 
modified. 

(c) Completely failed or fractured element. 
All net internal nodal forces of adjacent 
elements are zeroed. 

 

2.2 The Material Property Degradation Method 
(MPDM) 

In addition to the EFM, the material property 
degradation method (MPDM) is also used in this 
article for comparison. The assumption of the 
MPDM is that a damaged material can be replaced 
by an equivalent material with degraded properties. 
The effect of damage on material property 
degradation can be represented by internal state 
variables T

iD and C
iD which are function of the 

damage type: 
for matrix tensile failure, 
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for matrix compressive failure, 
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for fiber tensile failure, 
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for fiber compressive failure, 
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where the superscript d denotes degraded material 
properties, the superscripts T and C represent tension 
and compression, respectively. The values of 
internal state variables are obtained from Camanho 
& Matthews [10]: TD1 =0.07, TD2 = TD4 = 0.2, 

CD1 =0.14, CD2 = CD4 = 0.4. 
 

3 Failure Criteria 

3.1 The Strain Invariant Failure Theory (SIFT) 

A very brief description of the strain invariant 
failure theory (SIFT) is given here. SIFT is chosen 
because it is fully three-dimensional and it 
incorporates micromechanical features. Proposed by 
Gosse et al. [13], the theory determines if failure has 
occurred by considering the criticality of three strain 
invariant values, which have been “amplified” 
through micromechanical analysis. The strain 
components from homogenous FE solutions are 
amplified with thermo-mechanical amplification 
factors extracted from unit cell micromechanical FE 
models, before the invariants are calculated. The 
first strain invariant is J1, defined by 

zzyyxxJ εεε ++=1
 

(5) 

and the second deviatoric strain invariant 2 J ′ is 
defined by 
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where  , , , , ,x yzxyzzyyx εεεεε and xzε are the six 

components of the strain vector in general Cartesian 
coordinates. SIFT employs the von Mises (or 
equivalent) strain, which is related to the second 
deviatoric strain invariant by 

23Jvm ′=ε  
(7) 

These strain invariants are amplified through the use 
of representative micromechanical blocks, whereby 
individual fiber and matrix are modeled by 3-D 
finite elements (Fig. 2). Three fiber arrangements or 
arrays are considered: square, hexagonal, and 
diamond. The diamond arrangement is in fact the 
same as the square, but rotated through a 45o angle. 
These representative micromechanical blocks are 
given prescribed unit displacements in three cases of 
normal and three cases of shear deformations in 
order to obtain strain amplification factors [16]. The 
local micromechanical strains are extracted from 
various positions within the model and normalized 
with respect to the prescribed strain. In addition to 
the above mechanical amplification factors, the so-
called thermo-mechanical amplification factors may 
be obtained by constraining all the faces from 
expansion and performing a thermo-mechanical 
analysis by prescribing a unit temperature 
differential above the strain-free temperature.  

Twelve locations are chosen for the extraction 
of local amplification factors for each 
micromechanical block. The points F1 through F8 
are located at the fiber–matrix interface, F9 is 
located at the center of the (assumed circular) fiber, 
IF1 and IF2 are inter-fiber positions, and IS 
corresponds to the interstitial position. It is 
important to note that for a given matrix and fiber 
material system, the suite of micromechanical block 
analyses need only be performed once; the resulting 
amplification factors are stored in a look-up table or 
subroutine. The output of strains from a macro-FE 
analysis is efficiently amplified through this look-up 
subroutine before the strain invariant values are 
calculated and compared with the corresponding 
critical values. The amplification factors for carbon 
fiber–epoxy system used in all the analyses reported 
in this article were obtained from Gosse et al. [13], 
and coded in a look-up subroutine. However, the 
amplification factors have been independently 
verified by the authors, who performed the 
micromechanical FE block analyses. The matrix 
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(977-3) material properties were: Em=3.31GPa, 
vm=0.35, while the fiber (IM7) was assigned 
transversely isotropic properties: Ef1=303GPa, 
Ef2=15.2GPa, Gf12=9.65GPa, Gf23=6.32Gpa, v12=0.2 
and v23=0.2. The subscripts m and f refer to matrix 
and fiber, respectively; the subscript 1 indicates the 
axial fiber direction, the subscripts 2 and 3 the 
transverse directions. These constituent material 
properties were obtained from Ha [19]. 
 

 

 
Fig.2. Locations for the extraction of amplification 

factors within the micromechanical block 
models: (a) square array; (b) hexagonal array 

 
The first strain invariant J1 (Eq. 5.) is 

calculated with strains amplified only at the IF1, 
IF2, and IS positions within the matrix material in 
the micromechanical block. It is generally believed 
that J1-driven failure is dominated by volumetric 
changes in the matrix material. On the other hand, 
the von Mises strain (Eq. 7.) may be amplified with 
factors not only within the matrix material (IF1, IF2, 
and IS), but also the fiber and fiber–matrix interface 
(F1 through F9). We designate the superscript m for 
the former case to denote “matrix” (i.e. m

vmε ), and the 
superscript f for the latter case to denote “fiber” (i.e. 

f
vmε ). SIFT states that failure occurs when either of 

the three strain invariant values reaches its 
respective critical values (i.e., J1Crit, m

vmCritε  and 
f

vmCritε ), which are determined from the analysis of 
the coupon tests of the composite laminates with 
various lay-ups [13].  

When an element fails by either J1 or m
vmε , 

“partial” failure consisting of predominantly matrix 
microcracks, is assumed to have occurred. This 
corresponds to the state of damage depicted in Fig. 
1(b), where only nodal forces perpendicular to the 
fiber direction are modified. On the other hand, 
when an element fails by f

vmε , it is necessary to 
determine first the location of the critical site within 
the micromechanical block model (Fig. 2), where the 
critical value has been calculated. If the critical site 
is at any one of the eight locations at the fiber–
matrix interface (i.e., F1 through F8), “partial” 
failure is also assumed (Fig. 1(b)). The rationale for 
assigning partial failure despite f

vmε  going critical in 
these locations is that local interfacial failure (or 
debonding) between fiber and matrix could have 
occurred. However, if the critical location is found 
within the fiber itself (F9 in Fig. 2), then the element 
is assumed to have completely failed and the nodal 
forces both perpendicular and parallel to the fiber 
direction are zeroed. In the analysis of fastened 
joints described subsequently, the critical locations 
in the case of f

vmε  have always occurred at the fiber–
matrix interface (and not within the fiber), and so 
“partial” failure has invariably been used with SIFT. 
It is conceivable, however, that an undamaged or 
already partially failed element (with mainly matrix 
microcracks and/or fiber–matrix microdebonds), at 
some point in the load history, may fail completely 
(by local fiber failure). It is therefore necessary to 
develop a criterion to determine when one element 
may become completely failed. A very simple 
criterion is to use the failure strain of carbon fibers. 
If the longitudinal strain of an element is greater 
than the fiber tensile failure strain or smaller than the 
fiber compressive failure strain, then this element is 
deemed to be completely failed and loses its load-
bearing capability in both fiber and transverse 
directions. 

3.2 Tsai-Wu Criterion 

The well-known Tsai-Wu failure criterion [20] 
represents the failure criterion as a general quadratic 
in the stresses, which can be expressed as: 

1≥+ jiijii FF σσσ  (8) 

where Fi and Fij (i,j=1,2,…,6) are tensor quantities 
of strength parameters 
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where X and XC are the longitudinal tensile and 
compressive strengths, Y, YC and Z, ZC the transverse 
and normal tensile and compressive strengths, and 
S12, S23 and S13 the shear strengths in the 1-2, 2-3 and 
1-3 plane, respectively. 

While the Tsai-Wu failure theory is easy to use 
and very popular, it is in general unable to 
distinguish fiber-dominated failure from matrix-
dominated failure. In this article, we use a simple 
method to determine the failure modes. First the 
failure condition (Eq. 8.) must be satisfied. If σ11≥X, 
fiber tensile failure is assumed, but if σ11≤XC, fiber 
compressive failure is assumed. Otherwise, matrix 
failure is assumed.  
 

4 Application of the EFM on Contact Problems of 
Pin-Loaded Joints with Isotropic Materials 

To demonstrate the applicability of EFM on 
contact problems, an isotropic plate with a pin-
loaded hole in the center is used for comparison 
between the conventional contact algorithm and the 
EFM. The conventional contact algorithm is 
implemented in commercial FE code, ABAQUS, 
and the EFM in our own code. The size of the plate 
is 60mm×60mm×0.5mm. The radius of the hole is 
5mm and perfect-fit is assumed. Only half of the 
plate is modeled due to symmetry about the plane 
y=0. Fig.5 shows the mesh of the model. The model 
is constrained at the left edge and the center of the 
pin is fixed. Prescribed displacement in x direction is 
imposed on the right edge of the model with up to 
0.1% nominal strain. Three-dimensional brick 
elements are used with only one element in the 
thickness direction. The materials for the plate and 
pin are assumed to be different (Table 1.). The plate 
material is aluminum. A much higher Young’s 
modulus is used for the pin to simulate a nearly rigid 
pin.  

Different from the conventional contact 
algorithm, no contact surface exists in the EFM 
model. To simulate this contact problem, a special 

layer of interface elements, which connects the plate 
and the pin, is used. The contact mechanism 
between the plate and the pin allows the nodes 
connecting the plate and interface elements to slide 
in the tangential direction of the hole, while 
prohibits penetration of the nodes into the pin. To 
simulate this mechanism, the interface elements are 
all failed in the tangential direction to allow the 
sliding around the surface of the pin. Those interface 
elements under tension in radial direction are fully 
failed (in both radial and tangential directions), 
while those under compression in radial direction are 
only failed in tangential direction (partially failed). 
All of these interface elements are failed by the 
EFM.  
 
Table 1: Material properties of the isotropic model 

 Young’s modulus (GPa) Poisson’s ratio 
Plate 70 0.35 
Pin 2×104 0.3 

Contact element 70 0 
 

 
Fig. 3. Mesh of the isotropic model 

 
Fig. 4 shows the comparison of displacements 

between the use of conventional contact algorithm 
and EFM. It can be seen that EFM gives nearly the 
same deformation as the conventional contact 
algorithm does. Figs. 5 and 6 show the distributions 
of strain εx along the hole and mid-plane (x=0) of the 
plate when the nominal strain is 0.1%. The results 
obtained by EFM agree very well with those by 
conventional contact algorithm. From these 
simulation results, it can be seen that using EFM, the 
contact problem between the plate and pin can be 
accurately simulated.  
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Fig. 4. Solution with (a) conventional contact 
algorithm, and (b) EFM, for a pin-loaded hole 
specimen. 
 

 
Fig. 5. Distribution of strain εx around hole 
 

 
Fig. 6. Distribution of strain εx along mid-plane 
 

5 Failure Simulation on Pin-Loaded Composite 
Joints 

The technique verified on the above isotropic 
model is applied to pin-loaded composite joints now. 
To verify the SIFT-EFM method, the simulation 
results are compared with published experimental 
observations. 

5.1 Experimental specimens 

Experimental results from Camanho & 
Matthews [10] are used for comparison. Dimensions 
of the specimens for three failure modes are given in 
Table 2 and Fig. 7. For all cases, the nominal 
thickness of the specimens is 2mm and the diameter 
D of the hole is 6mm. The specimens were made of 
T300/914 with a [0/90/45/-45]2s lay-up. The 
composite material properties are given in Table 3. 
 
Table 2: Dimensions of specimens (from Camanho 
& Matthews [10]) 

Case W/D E/D L (mm) 
Bearing 6 6 100 

Net tension 3 6 100 
Shear-out 6 1.5 100 

 
Table 3: Material properties of T300/914 (from 
Camanho & Matthews [10]) 

Modulus in fiber direction E1 (GPa) 129 

Transverse moduli E2= E3 (GPa) 9.5 

Shear moduli G12=G13 (GPa) 4.7 

Shear modulus G23 (GPa) 3.2 

Poisson’s ratios v12=v13 0.34 

Poisson’s ratio v23 0.52 

Longitudinal tensile strength X (MPa) 1439 

Longitudinal compressive strength XC (MPa) 1318 

Transverse tensile strength Y= Z (MPa) 98 

Transverse compressive strength YC = ZC (MPa) 125 

Shear strength S12=S13=S23 (MPa) 79 

 

 
Fig. 7.  Pin-loaded hole specimen 

 

5.2 Numerical simulation 

Finite element models are created based on the 
experimental specimens. 8-node brick elements are 
used and there is only one element in thickness 
direction for each ply. 

The contact between the composite laminate 
and pin is simulated by using a circle of interface 
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elements around the hole. Here the pin is not 
explicitly modeled, and instead, the nodes on the 
hole surface are fixed to simulate a rigid pin. A 
prescribed displacement is imposed on the right edge 
of the models. Symmetric boundary conditions are 
imposed on the plane z=0 because the lay-up is 
symmetric. The meshes used are shown in Fig. 8. 
 

 
(a) Net tension model 

 
(b) Shear-out model 

 
(c) Bearing model 

Fig. 9. Meshes for different failure mode models 
 

5.2.1 Critical SIFT values 
The critical SIFT values for T300/914 are not 

known. In Refs [16-18], we had used the values for 
IM7/977-3. Since the strengths of T300/914 are 
about 35%-50% lower than those of IM7/977-3, it is 
therefore assumed that all the critical values (J1, m

vmε  

and f
vmε ) for T300/914 are 40% lower than the 

critical values for IM7/977-3. The SIFT critical 
values used in the simulation are J1Crit=0.0164, 

m
vmCritε =0.0618 and f

vmCritε =0.0109. In order to 
predict the fiber breakage, tensile and compressive 
failure strains of carbon fibers are also needed. The 
tensile failure strain of carbon fibers t

11ε =0.016 was 
taken as the tensile strength divided by the 
longitudinal modulus. The material properties of 
T300 were obtained from Herakovich [21]. 
Because no compressive strength or failure strain of 
carbon fibers is available in open literatures, an 
arbitrary value for the compressive failure strain 

c
11ε =0.01 is used in this analysis. 

5.2.2 Assumption of residual strength for elements 
failed under local compression 

In view of the experimental configuration 
(finger-tight washers were place between the 
specimen and the pins, which formed constraint to 
the specimen), it is reasonable to assume that the 
elements failed due to local compression still have a 
certain percentage of load-carrying capability so that 
these elements can transfer some of the load to the 
neighboring unfailed elements. This is achieved by 
introducing internal state variables to degrade 
material properties of failed elements in Camanho & 
Matthews’s work [10]. In this EFM analysis, a 
percentage of the internal nodal forces of 
neighboring unfailed elements are retained to 
represent the residual load-carrying capability of 
failed elements. Residual strength coefficients are 
introduced for this purpose.  When EFM is applied 
to failed elements due to local compression, the 
residual nodal forces of neighboring unfailed 
elements will be the product of their original internal 
nodal forces and residual strength coefficients. The 
values of residual strength coefficients are the same 
as those of internal state variables in Ref [10]. For 
compressive fiber failure, the residual strength 
coefficient is assumed to be 0.14, and for 
compressive matrix failure, the residual strength 
coefficient is assumed to be 0.4. For those elements 
failed due to tension, the appropriate nodal forces 
are zeroed, which assumes that the failed elements 
have completely lost their load-bearing capability in 
the corresponding tensile direction. 

5.2.3 Simulation results 

5.2.3.1 Strength prediction 
The load-displacement curves by the SIFT-

EFM, Tsai-Wu-EFM and Tsai-Wu-MPDM for all 
three cases are shown in Figs. 10-12. SIFT-EFM 
simulations agree very well with the experimental 
results before major load drop-off happens for the 
net tension and shear-out models. It will be seen in 
next subsection that major load drop-offs happen for 
these two models because damage has been 
extended to the laminate’s free-edge (Figs. 13-14). 
For the bearing model, the load keeps increasing and 
a major load drop-off happens at an extremely large 
prescribed displacement. One possible reason is that 
the damage area is small and the failed elements due 
to local compression still have some load-bearing 
capability based on our assumption. However, this 
assumption of residual load-bearing capability is 
necessary in order to transfer load from the pin to 
the unfailed elements. Although the load keeps 
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increasing for large prescribed displacements for the 
bearing model, the turning point from linear to 
nonlinear part of the load-displacement curve is 
quite close to the experimental result. 

Compared with the SIFT-EFM results, major 
load drop-offs happen at much smaller prescribed 
displacements for the Tsai-Wu-EFM (Figs. 10-12).  
Conservative ultimate strengths can be observed for 
the net tension and shear-out model, and 
overestimated ultimate strength for the bearing 
model. The load-displacement curves given by the 
Tsai-Wu-MPDM are very close to the SIFT-EFM 
results for these three failure mode cases, but there is 
no obvious load drop-off even loaded to a very large 
prescribed displacement. 
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Fig. 10. Load-displacement curve (Net tension) 
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Fig. 11. Load-displacement curve (Shear-out) 
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Fig. 12. Load-displacement curve (Bearing) 

 
The experimental and SIFT-EFM predicted 

strengths are presented in Table 4. In the table, the 
experimental values are the maximum loads 
sustained by the joints [10]. The predicted strengths 
were obtained based on the same final failure criteria 
as Camanho & Matthews [10] used. For the net 
tension and shear-out models, the first load drop-off 
corresponds to the failure load. For the bearing 
model, the load at which the fiber failure reaches the 
edge of the washer (with an external diameter 
12mm) is taken as the ultimate load. It can be seen 
that he errors between the experimental and 
predicted strengths are within 4% for all three cases. 
 
Table 4: Predicted and experimental strengths 

Model Experimental (N) SIFT-EFM (N) Error 
Net tension 8020 8300 3.5% 
Shear-out 6547 6780 3.6% 
Bearing 9803 10200 4.0% 

 

5.2.3.2 Damage patterns 
The comparisons between simulated and 

experimental damage patterns for all three cases are 
shown in Figs. 13-15. The predicted damage patterns 
are at the predicted failure loads described in 5.2.3.1. 
In the net tension model, matrix failure in the 90o 
plies is the initial failure mechanism. The fiber 
tensile failure along the laminate’s width in the 0o 
plies causes the major load drop-off. In the shear-out 
model, matrix compressive failure is predicted in the 
90o, 45o and -45o plies. The fiber compressive failure 
in the 0o plies contributed to the major load drop-off. 
At the final failure load, fiber failure has reached the 
end of the laminate. In the bearing model, the main 
failure mechanism is fiber compressive failure and it 
happens mainly in the bearing side of the hole. 
Because of the relatively small width (W) for the net 
tension model and relatively small end distance (E) 
for the shear-out model, damage is easily extended 
to the free edge of the laminate. But for the bearing 
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model, the damage is confined to a small area close 
to the hole surface because of the large width (W) 
and end distance (E). In general, the damage patterns 
are in good agreement with the experimental results 
for the three cases. 

 
Fig. 13. Damage pattern (net tension) 

 

 
Fig. 14. Damage pattern (shear-out) 

 
Fig. 15. Damage pattern (bearing) 

 

6 Conclusions 

The element-failure method (EFM) has been 
implemented in a three-dimensional implicit code to 
model the damage progression in pin-loaded 
composite joints. It assumes that the deleterious 
effects of damage on mechanical properties can be 
effectively achieved by modifying the nodal forces 
of failed finite elements. This leaves the original 
material properties unchanged, ensuring that no 
recalculation of stiffness matrices is necessary. The 
EFM also provides a convenient method to deal with 
contact problems. Different from the conventional 
contact algorithm, no contact surface is needed and 
only a circle of interface elements are failed by the 
EFM to model the contact condition. In conjunction 
with a micromechanics-based failure theory, strain 
invariant failure theory (SIFT), EFM is proved to be 
able to accurately predict the damage patterns and 
ultimate strengths for three failure modes of pin-
loaded composite joints: net tension, shear-out and 
bearing. 
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