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Abstract  

A functionally graded magneto-electro-elastic 
material layer bonded to an elastic substrate is 
investigated. The functionally graded magneto-
electro-elastic layer contains an edge crack that is 
perpendicular to the surface of the medium. Integral 
transform and dislocation density functions are 
employed to reduce the problem to the solution of a 
system of singular integral equations. Both 
impermeable crack and permeable crack 
assumptions are considered. Numerical results show 
the effect of crack configuration and loading 
combination parameter on the field intensity factors 
and energy release rate of the functionally graded 
magneto-electro-elastic strip bonded to an elastic 
substrate structure. 
 
 
1 Introduction 

Composite materials consisting of a 
piezoelectric phase and a piezomagnetic phase 
simultaneously process piezoelectric, piezomagnetic 
and magneto-electric effects, and thus they have 
wide applications in microwave electronics, 
optoelectronics and electronic instrumentation [1, 2]. 
Due to multi-field coupled effects, a magnetic field 
may induce an electric field and an elastic field in a 
magneto-electro-elastic solid, and vise versa. The 
coupled properties of piezoelectric/piezomagnetic 
composites offer great opportunities for engineers to 
create intelligent structures and devices that are 
capable of responding to internal and/or 
environment changes. In practical applications, a 
magneto-electro-elastic layer is usually bonded to an 
elastic substrate. Due to the difference of the 
thermo-physical properties between the magneto-
electro-elastic layer and the substrate, the surface of 

the magneto-electro-elastic layer may suffer 
cracking during processing or under influence of the 
environment. Therefore, study of the surface 
cracking of laminated magneto-electro-elastic 
medium is of great importance. The problem of an 
edge crack has been study in references [3, 4] for 
homogeneous elastic layers under mechanical load.  

On the other hand, the development of 
functionally graded materials (FGMs) has 
demonstrated that they have the potential to reduce 
the stress concentration and increase the fracture 
toughness. Consequently, the concept of FGMs can 
be extended to the magneto-electro-elastic materials 
to improve the reliability of magneto-electro-elastic 
materials and structures. These new kinds of 
materials with continuously varying properties may 
be called functionally graded magneto-electro-
elastic materials.  

The problem of an edge or an embedded crack 
perpendicular to the surface of the functionally 
graded magneto-electro-elastic layer has been 
considered by Ma et al. [5] for coupled magneto-
electro-mechanical load. The dynamic fracture 
behavior of an edge crack or an embedded crack in 
functionally graded magneto-electro-elastic strip has 
been considered by Feng and Su [6, 7].  

For many practical devices, functionally 
graded magneto-electro-elastic structures are 
surface-mounted. An important fracture mode is that 
the functionally graded magneto-electro-elastic layer 
contains a crack perpendicular to its surface. It is the 
purpose of this paper to investigate the fracture 
behavior of a functionally graded magneto-electro-
elastic layer bonded to an elastic substrate and 
containing an edge crack perpendicular to its surface. 
2. Formulation of the problem 

The problem under consideration is described 
in Fig.1. A functionally graded magneto-electro-
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elastic strip of width h  contain a crack of length c  
( hc <<0 ) perpendicular to the interface bonded to 
a homogeneous elastic substrate of width eh . The 
system of rectangular Cartesian coordinates ),,( zyx  
is introduced in the layered material in such a way 
that the crack is located along the x -axis, and the 
y -axis is parallel to the interface. In the following, 

the subscripts x , y , z  will be used to refer to the 
direction of coordinates, respectively. The 
functionally graded magneto-electro-elastic layer 
exhibits transversely isotropic behavior and is poled 
in z -direction.  

 
 
 
 
 
 
 
 

Fig.1 Geometry of the crack problem in the 
functionally graded coating-homogeneous substrate 

structure 
 
When the structure is subjected to anti-plane 

mechanical and in-plane electric and magnetic loads, 
the crack problem involves the anti-plane elastic 
field coupled with the in-plane electric and magnetic 
field. The constitutive equations for the magneto-
electro-elastic materials are as follows: 

kkkkz fewc ,15,15,44 ψφτ ++=                 (1a) 

kkkk gweD ,11,11,15 ψφε −−=                 (1b) 

kkkk gwfB ,11,11,15 ψμφ −−=                 (1c) 
where kzτ , kD , kB  ),( yxk =  are the anti-plane 
shear stress, in-plane electric displacement and 
magnetic induction, respectively; 44c , 15e , 15f , 11ε , 

11g  and 11μ  are the elastic, the piezoelectric, the 
piezomagnetic, dielectric, electromagnetic and the 
magnetic constants, respectively; w , φ  and ψ  are 
the mechanical displacement, electric potential and 
magnetic potential of the functionally graded 
magneto-electro-elastic layer, respectively. 

The material properties of the functionally 
graded magneto-electro-elastic are assumed to be 
one-dimensionally dependent as: 

)exp(),,,,,(
),,,,,(

110110150150110440
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xgfec
gfec

βμε
με

=
     (2) 

where 440c , 110ε , 150e , 150f , 110g  and 110μ  are the 
material constants at 0=x ; β  is a parameter to 
describe the material gradient distribution. 

Substituting Eqs. (1) into the basic equations of 
functionally graded magneto-electro-elastic 
boundary value problem, i.e., 

0,, =+ yyzxxz ττ , 0,, =+ yyxx DD , 0,, =+ yyxx BB  (3) 
We can obtained the equilibrium equation for 
functionally graded magneto-electro-elastic 
materials as follows, 
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440 =+∇++∇++∇ xxx fewwc βψψβφφβ  (4a) 
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2
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2
150 =+∇−+∇−+∇ xxx gwwe βψψβφφεβ  (4b) 
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2
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2

110,
2

150 =+∇−+∇−+∇ xxx gwwf βψψμβφφβ  (4c) 

where 22222 yx ∂∂+∂∂=∇  is the two-
dimensional Laplace operator in the variables x  and 
y .  

For convenience of mathematics and similar to 
the method mentioned by Feng and Su [6], we 
assume 

ζχφ 111 fewd ++= , ζχψ 222 fewd ++=  (5) 
where 
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are the known constants. The governing Eqs.(4) can 
be expressed as 

0,
2 =+∇ xww β                            (7a) 

0,
2 =+∇ xβφφ                             (7b) 

0,
2 =+∇ xβψψ                           (7c) 

The constitutive relations Eqs.(1) can be 
rewritten as 

( )xxxxz mmwmx ,30,20,110)exp( ζχβτ ++=    (8a) 
( )yyyyz mmwmx ζχβτ 30,20,110)exp( ++=    (8b) 

xx xD ,)exp( χβ= , yy xD ,)exp( χβ=           (8c) 

xx xB ,)exp( ζβ= , yy xB ,)exp( ζβ=            (8d) 
where, 
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The constitutive equations of the elastic layer 
are 

e
x

ee
xz wc ,44=τ , e

y
ee

yz wc ,44=τ                 (10) 
where the subscript e  represents the elastic layer, 

ec44  is elastic constant of the elastic layer, ew  is the 
z -component of the displacement vector for the 
elastic layer. The equilibrium equation for the elastic 
layer is as follows 

0,, =+ e
y

e
x ww                                (11) 

The mixed boundary value problem shown in 
Fig.1 must be solved under the following conditions. 
For the magneto-electrically impermeable crack, the 
boundary conditions are 

0),0(),0(),0( === yByDy xxxzτ , ∞<<−∞ y         (12a) 
0),(),( == yhByhD xx , ∞<<−∞ y                      (12b) 

0)0,( ττ −=xyz , 0)0,( DxDy −= , 0)0,( BxBy −= , cx <<0 (12c) 
0)0,()0,()0,( === xxxw ψφ , hxc ≤≤                 (12d) 

),(),( yhyh e
xzxz ττ = , ),(),( yhwyhw e= , ∞<<−∞ y (12e) 

For the magneto-electrically permeable crack, 
the boundary conditions are 

0),0(),0(),0( === yByDy xxxzτ , ∞<<−∞ y          (13a) 
0),(),( == yhByhD xx , ∞<<−∞ y                      (13b) 

0)0,( ττ −=xyz , cx <<0                                    (13c) 
0)0,( =xw , hxc ≤≤                                        (13d) 

0)0,()0,( == xx ψφ , hx ≤≤0                               (13e) 
),(),( yhyh e

xzxz ττ = , ),(),( yhwyhw e= , ∞<<−∞ y  (13f) 
The electric displacement )0,(xDy  and 

magnetic induction )0,(xBy  on the crack surfaces 
consist of two components. The first is the imposed 
electric displacement 0D−  and magnetic induction 

0B−  for )0,(xDy  and )0,(xBy . The second is the 
unknown caused by 0τ−  for both of )0,(xDy  and 

)0,(xBy  [6]. 

3. Methods of solutions 
Employing the Fourier transform on the 

variable x  and the Fourier sine transform on the 
variable y  and considering at infinity the quantity in 
the left side of Eqs.(4) must limited, it can be shown 
that 
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where )(sAj , )(sB j , )(sC j , )3,2,1( =j  are unknown 
functions to be determined and 

)()(1 βisssm +=                          (15a) 
22

2 42)( ssm +−−= ββ           (15b) 
22

3 42)( ssm ++−= ββ            (15c) 
The solution of the governing equations (11) 

for the elastic layer can be expressed in the 
following form: 

[ ]∫
∞ −+=

0 21 )sin()()(2),( dssyesDesDyxw sxsxe

π
 (16) 

To make the solution satisfy the boundary 
conditions (12), we introduce the following 
dislocation density function 

)0,()( , xwxg xw =                           (17a) 
)0,()( , xxg xφφ =                            (17b) 
)0,()( , xxg xψψ =                           (17c) 

and applying Eq.(14) and (5), we obtain 

∫=
c ist
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where 
)()()()( 110110150 tggtgtgetg w

ge
w ψφ
ε
φψ ε −−=    (19a) 

)()()()( 110110150 tgtggtgftg w
fg

w ψφ
μ
φψ μ−−=   (19b) 

Using Eqs.(8), (14), (18), together with the boundary 
conditions (12), it follows that 
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φψ               (20c) 
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c ge
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hmhm dttsFtgemBemB

0 23322 ),()(32 ε
φψ  (20d) 

∫=+
c fg

w
hmhm dttsFtgemCemC

0 23322 ),()(32 μ
φψ  (20e) 
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where the expressions of functions ),( tsFj  )2,1( =j  
are 
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By using the theory of residues, the integrals in 
Eqs.(21) may be evaluated as follows: 
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From Eqs.(22), unknowns )(2 sA , )(3 sA , )(2 sB , 
)(3 sB , )(2 sC , )(3 sC , )(1 sD  and )(2 sD  can be 

obtained and omitted here. 
Substituting the expressions of )(2 sA , )(3 sA , 
)(2 sB , )(3 sB , )(2 sC , )(3 sC , )(1 sD  and )(2 sD  

into Eqs.(8), and by using the these expressions and 
the boundary condition (12), we obtain the following 
integral equations: 
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where the kernels ),( txH , ),( txG  are given by 
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where [ ]0H  is a constant matrix which depend only 
on the material properties. It can be shown from Eq. 
(24) that 
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By applying Eq. (23) to crack surface boundary 
conditions (12), and using (26), we obtain the 
following singular integral equation: 
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4. Solution of integral equation 

This integral equation can be used to determine 
the as yet unknown functions wg , φg , and ψg . In 
order to simplify the analysis, the interval ],0[ c  is 
normalized by defining 

( )rx += 1
2
1 , ( )ut += 1

2
1                         (28a) 

)()( uGtg ww = , )()( uGtg φφ = , )()( uGtg ψψ = (28b) 
)(rfw=− ∞τ , )(0 rfD φ=− ,  )(0 rfB ψ=−    (28c) 

and then the integral equation (27) would become 
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Where 

),(
2

),( txGcurG =′                         (30) 

It can be observed that the weight function of 
the solution of (29) is 21)1()( −−= uuw , and hence 
the solution of the integral equation (29) may be 
expressed as [8~10] 
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where nT  is the Chebyshev polynomial of the first 
kind and L,,, 210 ccc  , L,,, 210 ddd  and L,,, 210 eee  
are unknown constants. Note that the single-values 
condition (11) becomes 

0)(
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1
=∫− dttGw , 0)(
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1
=∫− dttGφ , 0)(
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1
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From Eqs.(31) and (32) and the orthogonality of 
Chebyshev polynomials it can be shown that 

00 =c ， 00 =d , 00 =e . The remaining constants 
are then determined by substituting from (31) into 
(29).  

The singularity of the integral equation (29) 
may be removed by using the following relations 
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where in the second term on the right-hand side in 
the integrand is bounded, the first integral is given 
by 
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In the problem under consideration from 
Eqs.(28), (33) and (34), it may be seen that r=σ , 
which, with 11 <<− r , indeed satisfies the condition 

1<σ . All other integrals involving the solution are 
evaluated by using Gaussian quadrature, and the 
resulting functional equation is solved by using the 
collocation method [11]. Since it is not possible to 
investigate the regularity of the corresponding 
infinite matrix, the convergence of the solution may 
be examined by varying the number of the term 
retained in the series. Because of the nature of the 
solution in this problem, it is preferable to 
concentrate the collocation point ku  near the ends. 
They are, thus, chosen as 

0)( =lN uT , 
⎭
⎬
⎫

⎩
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)12(cos π  ),,2,1( Nl L=  (35) 

where N  is the number of terms retained in the 
series. 
5. Field intensity factors and energy release 
rates 

After determining the coefficients Nccc ,,, 21 L , 

Nddd ,,, 21 L  and Neee ,,, 21 L  for the edge crack 
problem, the stress intensity factors (SIFs), the 
electric displacement intensity factors (EDIFs) and 
the magnetic induction intensity factors (MIIFs) at 
the crack tips may be defined and evaluated as 
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From Eqs.(23, 36~37), it is easy to know that 
the SIFs, the EDIFs and the MIIFs are independent 
and that they can be obtained by solving Eqs.(29), 
respectively. Namely, the SIFs, the EDIFs and the 

MIIFs are only related to the corresponding 
mechanical, electrical and magnetical loading. So 
that it should be noted that for the magneto-electro-
elastically impermeable cracks, as electrical and/or 
magnetical load are applied, the SIFs cannot 
perfectly describe the fracture characteristics as in 
the purely elastic case. Therefore, the energy release 
rates (ERRs) G  are introduced by calculating the 
work done in closing the crack tip over an 
infinitesimal distance. In accordance with the 
definition of the energy release rate proposed by 
[12], after a similar deriving process carried out by 
Wang and Yu [13] and Feng and  Su [6, 7], we can 
finally obtain 
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For magneto-electrically permeable case, the 
field intensity factors and ERRs are respectively 

∑
∞

=

−
→

−=−=

1
44)0,()(2lim)(

n
n

c
yz

cx
III cccexcxcK βτ   (41) 

)()(
44

15 cK
c
e

cK IIID =                                         (42) 

)()(
44

15 cK
c
f

cK IIIB =                                         (43) 

44

2

2
)(

)(
c

cK
cG III=                                               (44) 

6. Conclusions 

A surface crack in a functionally magneto-
electro-elastic strip bonded to an elastic layer is 
considered. Both impermeable and permeable 
crack assumption are considere. For the 
magneto-electrically impermeable cracks, the 
SIFs, the EDIFs and MIIFs are, respectively, 
related to applied mechanical loads, electrical 
loads and magnetical loads only. The ERRs 
depend on both applied loads including 
mechanical, electrical and magnetical loads and 
material parameters. For the magneto-
electrically permeable cracks, both magnetical 
and electrical loads have no contribution to 
ERRs and field intensity factors.  
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