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Abstract

A functionally graded magneto-electro-elastic
material layer bonded to an elastic substrate is
investigated. The functionally graded magneto-
electro-elastic layer contains an edge crack that is
perpendicular to the surface of the medium. Integral
transform and dislocation density functions are
employed to reduce the problem to the solution of a
system of singular integral equations. Both
impermeable crack and permeable crack
assumptions are considered. Numerical results show
the effect of crack configuration and loading
combination parameter on the field intensity factors
and energy release rate of the functionally graded
magneto-electro-elastic strip bonded to an elastic
substrate structure.

1 Introduction

Composite  materials  consisting of a
piezoelectric phase and a piezomagnetic phase
simultaneously process piezoelectric, piezomagnetic
and magneto-electric effects, and thus they have
wide applications in microwave electronics,
optoelectronics and electronic instrumentation [1, 2].
Due to multi-field coupled effects, a magnetic field
may induce an electric field and an elastic field in a
magneto-electro-elastic solid, and vise versa. The
coupled properties of piezoelectric/piezomagnetic
composites offer great opportunities for engineers to
create intelligent structures and devices that are
capable of responding to internal and/or
environment changes. In practical applications, a
magneto-electro-elastic layer is usually bonded to an
elastic substrate. Due to the difference of the
thermo-physical properties between the magneto-
electro-elastic layer and the substrate, the surface of

the magneto-electro-elastic layer may suffer
cracking during processing or under influence of the
environment. Therefore, study of the surface
cracking of laminated magneto-electro-elastic
medium is of great importance. The problem of an
edge crack has been study in references [3, 4] for
homogeneous elastic layers under mechanical load.

On the other hand, the development of
functionally graded materials (FGMs) has
demonstrated that they have the potential to reduce
the stress concentration and increase the fracture
toughness. Consequently, the concept of FGMs can
be extended to the magneto-electro-elastic materials
to improve the reliability of magneto-electro-elastic
materials and structures. These new kinds of
materials with continuously varying properties may
be called functionally graded magneto-electro-
elastic materials.

The problem of an edge or an embedded crack
perpendicular to the surface of the functionally
graded magneto-electro-elastic layer has been
considered by Ma et al. [5] for coupled magneto-
electro-mechanical load. The dynamic fracture
behavior of an edge crack or an embedded crack in
functionally graded magneto-electro-elastic strip has
been considered by Feng and Su [6, 7].

For many practical devices, functionally
graded  magneto-electro-elastic ~ structures are
surface-mounted. An important fracture mode is that
the functionally graded magneto-electro-elastic layer
contains a crack perpendicular to its surface. It is the
purpose of this paper to investigate the fracture
behavior of a functionally graded magneto-electro-
elastic layer bonded to an elastic substrate and
containing an edge crack perpendicular to its surface.

2. Formulation of the problem

The problem under consideration is described
in Fig.1. A functionally graded magneto-electro-
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elastic strip of width h contain a crack of length ¢
(0<c<h) perpendicular to the interface bonded to
a homogeneous elastic substrate of width h,. The
system of rectangular Cartesian coordinates (X, Y, z)
is introduced in the layered material in such a way
that the crack is located along the x-axis, and the
y -axis is parallel to the interface. In the following,

the subscripts x, y, z will be used to refer to the

direction of coordinates, respectively. The
functionally graded magneto-electro-elastic layer
exhibits transversely isotropic behavior and is poled
in z -direction.

o

h Functionally graded y
C Magneto-electro-elastic strip

> h, Elastic strip >

Fig.1 Geometry of the crack problem in the
functionally graded coating-homogeneous substrate
structure

Y
X

When the structure is subjected to anti-plane
mechanical and in-plane electric and magnetic loads,
the crack problem involves the anti-plane elastic
field coupled with the in-plane electric and magnetic
field. The constitutive equations for the magneto-
electro-elastic materials are as follows:

Ty = CagWy + 8158y + Frsw (1a)
Dy =€sWy —&ndy — 9u¥ « (1b)
By = fisWy — 9118, — 119 & (1c)

where 7., , D, , B, (k=X,y) are the anti-plane
shear stress, in-plane electric displacement and
magnetic induction, respectively; c,,, €5, fs, &,
g,; and gy, are the elastic, the piezoelectric, the
piezomagnetic, dielectric, electromagnetic and the
magnetic constants, respectively; w, ¢ and y are
the mechanical displacement, electric potential and
magnetic potential of the functionally graded
magneto-electro-elastic layer, respectively.

The material properties of the functionally
graded magneto-electro-elastic are assumed to be
one-dimensionally dependent as:

(Cugr 11,150 Fi50 Ou1, £411)

= (C440+ €120+ €150+ F150, G110+ £4110) EXP(SX)

()
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where Cuo, €130 €150, fiso 1o aNd g4y are the
material constants at x=0; £ is a parameter to
describe the material gradient distribution.

Substituting Egs. (1) into the basic equations of
functionally graded magneto-electro-elastic
boundary value problem, i.e.,

Tax TTyy =0,Dy,+D,, =0, B,y +B,, =0 (3)
We can obtained the equilibrium equation for
functionally graded magneto-electro-elastic
materials as follows,

C440(V2W+:6W,x)+9150(V2¢+ﬂ¢,x)+ f150(V2'//+ﬂ‘//,x):O (43.)

€150 (V2W+ﬂ\N,x )_ €110 (V2¢+ﬁ¢,x)_ G110 (V2W+ﬁ!//,x): 0 (4b)

fis0 (VZW"'ﬂW,x )_ 9110 (V2¢+ﬂ¢,x )— Hiso (VZ‘// +ﬂ‘//,x): 0 (4C)
where V2 =0%/ox?+8%/oy?  is  the  two-
dimensional Laplace operator in the variables x and
y.

For convenience of mathematics and similar to
the method mentioned by Feng and Su [6], we
assume

g=dw+ey+fd, y=dw+e,x+ f,0 (5)
where

dy = 21504110 = f15029110 | dy =210 f150 —915029110 (6a)

110110 ~ 9119 110110 — 9170

—H 9
& = 110 . &= 110 . (6b)
H110€110 ~ 9110 #110€110 — 9110
—&
f) = 9110 , fy= 110 (6¢)

H110€110 — 91210 110110 — 91210
are the known constants. The governing Eqgs.(4) can
be expressed as

Viw+Aw, =0 (72)
VZp+p =0 (7b)
Vi +py, =0 (70)

The constitutive relations Egs.(1) can be
rewritten as

T,, = exp(ﬂx)(mmwl,x TMypX x + m30§,x) (8a)
Ty, = eXp(ﬁX)(mloWLy FMyxy + m30§y) (8b)
D, =exp(B)x.. D, =exp(BX)z, (8c)
B, =exp(A)< . B, =exp(A)¢, (8d)
where,

2 2
€110 150 — 2€150 F150 9110 + £4108150 (%)

My = €50 + >
H108110 — 9110

f1500110 — E1s0 4

1509110 ~ C1s04410
My, = 2 (9b)

H10€110 — G110

€1509110 — Fis0€110

m30 = (9C)

2
Hi106110 — Y110
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The constitutive equations of the elastic layer
are

ng = C§4W,ex' Tsz = C5.4W,ey (10)
where the subscript e represents the elastic layer,
cy, is elastic constant of the elastic layer, w* is the
z -component of the displacement vector for the
elastic layer. The equilibrium equation for the elastic
layer is as follows

wi +wS, =0 (11)
The mixed boundary value problem shown in
Fig.1 must be solved under the following conditions.
For the magneto-electrically impermeable crack, the
boundary conditions are

72 (0.Y)=Dx(0,y) =Bx(0.Y) =0, —o<y<e  (12a)
Dx(h,y) = Bx(h,y) =0, —o<y<oo (12b)
72 (x0) = -7, Dy (%,0) =—Dg , By (x,0)=-Bg , 0<x<c (12C)
W(x0) = 4(x,0) = (x,0) =0, c<x<h (12d)
(W y) =75 (y), wh,y) =we(h,y), —o<y<e (12€)
For the magneto-electrically permeable crack,

the boundary conditions are

7x2(0.Y) = Dx(0,Y) =B (0,y) =0, —o<y<oo (13a)
Dy(h,y) =Bx(h,y)=0, —o<y<w (13b)
7y (%0) =79, 0<Xx<C (13c)
w(x,0)=0, c<x<h (13d)
#(x0)=p(x,0)=0, 0<x<h (13e)
ta(hy) =75 (hy) ) Wh,y) =wé(h,y), —o<y<oo (13f)
The electric displacement D, (x,0) and

magnetic induction B, (x,0) on the crack surfaces

consist of two components. The first is the imposed
electric displacement —D, and magnetic induction

- B, for D,(x,0) and B, (x,0) . The second is the
unknown caused by —z, for both of D, (x,0) and
B, (x,0) [6].

3. Methods of solutions

Employing the Fourier transform on the
variable x and the Fourier sine transform on the
variable y and considering at infinity the quantity in

the left side of Egs.(4) must limited, it can be shown
that

w(x,y) = iro A (s)e ™ e *ds
227 -~ (14a)
+—r [AZ (s)e™ + Ay(s)e™ ]sin(sy)ds
72' —00

1 —Mmyy o—isX
2xy) =5 B(s)e e s
2” - (14b)
+—J. [Bz (s)e™* + By(s)e™" ]sin(sy)ds
T -0

sy == [ eutse™e s
2” - (14c)
+—J. [Cz(s)emzx+C3(s)em3x]sin(sy)ds

JT d—0

where A;(s), B;(s), C;(s), (j=123) are unknown

functions to be determined and

m, (s) =+/s(s+ip) (15a)
my(s)==B/2-+#*[4+s*  (15b)
My(S) =—B/2++ B2 /4+5? (15c¢)

The solution of the governing equations (11)
for the elastic layer can be expressed in the
following form:

WE (X, ) = % [[D.(s)e” + D, () fin(sy)ds (16)

To make the solution satisfy the boundary
conditions (12), we introduce the following
dislocation density function

9, (X) =W, (x.0) (17a)
0,(0) =4, (x0) (17b)
9, ()=, (x0) (17¢)
and applying Eq.(14) _and (5), we obtain
A =[] g, "t (182)
8,9 = [ 93, (Ve™at (18b)
Ci(s) =1 [, 0. et (18¢)

where
Dugy (1) =€1500, (1) — £1109, (1) — 9109, (1) (199)
9\:/%/ (t) = fi509w () — 91109, (t) — 14109, (t) (19b)

Using Egs.(8), (14), (18), together with the boundary
conditions (12), it follows that

Ao + A = [g,, (DF (s, t)dt (20a)
B,m, +Bym; = [ g3, (OF (s, et (20b)
Cam, +Cam, = [0, (OF, (5.0t (20c)

B,m,e™" + Bym,e™" = jo gs% (), (s, t)dt (20d)

wey

C,m,e™" +C,m,e™" =J:g 94 (t)F, (s,t)dt (20e)



e
C, =
AzmzemZh + A3m3em3h 7¢S[D195h — Dze Sh]

My exp(sh) (20f)

C
- nga)Fz(s,t)dt

Ae™ + Ae™ _De" - D,e" = J‘:gw(t)F3 (s,t)dt
(209)
D, (s)e*™™ _ D, (s)e ") =0 (20h)
where the expressions of functions F;(s,t) (j=12)
are

1 = -5 .
F (s,t)=— S 21a
0= [ty
1 = -5 .

F(st)=—| ——¢"tNq 21b
(0= [ ey e e @)
1 > i —-S ip(t-h)
F(st)=— [ 1 =S gy, 210

2= pmZ(p) +s?
By using the theory of residues, the integrals in
Egs.(21) may be evaluated as follows:

S —tm; (s)
F(st)=——— ™™ (22a)
' m, (s) —m,(s)
S h-t)m, (s)
F(s,t)=———e™tm (22b)
? m, (s) — M5 (s)
Fasit) = - ) _trom) (95

25 [my(s) - m, ()]s

From Egs.(22), unknowns A,(s), As(s), B,(S) .,

Bs(s) , C,(s), C;(s), D,(s) and D,(s) can be
obtained and omitted here.

Substituting the expressions of A,(s), As(s),

B,(S) . By(s) . C,(s), Cy(s), Dy(s) and D,(s)

into Egs.(8), and by using the these expressions and

the boundary condition (12), we obtain the following
integral equations:

. GT I aw(®) 7y(%)

I[H(x,t) g,(t) dt+;'[ G} g4 pdt =Dy (x); (23)

0 g, (®) 0 g, ®) By(X)
where the kernels H(x,t), G(x,t) are given by

HoOl= o= [ M= ds (29

(G0 0)]= [[G, Jsds (25)
where [H, ] is a constant matrix which depend only
on the material properties. It can be shown from Eq.
(24) that

1

[HI== [ 29)
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By applying Eq. (23) to crack surface boundary
conditions (12), and using (26), we obtain the
following singular integral equation:

gw(®) gw(t) =70
1 €1 2 (¢
;[HO]IO m‘ 9¢(t)}dt +;J; [G(X,t)49¢(t)}dt = [ Do} (27

gy/(t) g,/,(t) 7BO
4. Solution of integral equation

This integral equation can be used to determine
the as yet unknown functions g,,, g,, and g, . In
order to simplify the analysis, the interval [0, c] is
normalized by defining

x=%(l+ r), t=%(1+u) (28a)
9w () =G, (), g,(t) =G,(u), g, (t) =G, (u) (28b)

-7, =f,(r), =Dy =f,(r), -B, =1, (r) (28c)

and then the integral equation (27) would become

c Gy (u) ¢ Gy (u) fy(r)
%[Ho]j u—fr Gy(u) dt+%J. [6'(r.wk Gy(u) tdt =1 f,(r)  (29)

0 G, (u) 0 Gy, (u) f,, (1)
Where

c

G'(r,u) =§G(x,t) (30)

It can be observed that the weight function of
the solution of (29) is w(u)=(1—u)™¥?2, and hence
the solution of the integral equation (29) may be
expressed as [8~10]

G, (U) = Jll—uicm W (312)
— Y n=0

G, (U) = ﬁZdT W @

G, (u) =ﬁiem ©w Gl
- n=0

where T, is the Chebyshev polynomial of the first
kind and c,,c,,C,,--- , dy,d;,d,,--- and ey,e;,€,, -

are unknown constants. Note that the single-values
condition (11) becomes

J‘_llGW(t)dt —0, J_lleﬁ (t)dt=0, fle (t)dt =0 (32)

From Egs.(31) and (32) and the orthogonality of
Chebyshev polynomials it can be shown that
Cc,=0, d,=0, e, =0. The remaining constants
are then determined by substituting from (31) into
(29).

The singularity of the integral equation (29)
may be removed by using the following relations
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P Taudu _ Ta@-Ta() 4, (33
J.—l(ufr)\llfu =Tn(r J:1(u rvl-u J._l(u rvl-u ( )
where in the second term on the right-hand side in
the integrand is bounded, the first integral is given

by
f o W)y gy B2 (g
du-oWi-u  Vl-o ' 1-Ja-0)2
In the problem under consideration from
Egs.(28), (33) and (34), it may be seen that o =r,
which, with —1<r <1, indeed satisfies the condition
o <1. All other integrals involving the solution are
evaluated by using Gaussian quadrature, and the
resulting functional equation is solved by using the
collocation method [11]. Since it is not possible to
investigate the regularity of the corresponding
infinite matrix, the convergence of the solution may
be examined by varying the number of the term
retained in the series. Because of the nature of the
solution in this problem, it is preferable to
concentrate the collocation point u, near the ends.

They are, thus, chosen as
T
Ty(u)=0, u =coss (2l -1)—* (=12
n(U) | {( )ZN} (=1,

where N is the number of terms retained in the
series.

- N) (35)

5. Field intensity factors and energy release
rates

After determining the coefficients c;,c,,---,Cy,
d,,d,,---,dy and ee,,---,ey for the edge crack
problem, the stress intensity factors (SIFs), the
electric displacement intensity factors (EDIFs) and

the magnetic induction intensity factors (MIIFs) at
the crack tips may be defined and evaluated as

Kin () = )!mev 2(x~ C)Tyz(xvo)

e i [cascn +e15dn + fisen) (%)
Kp ()= Xlinjm Dy(x0)
= i lexsCn — 2110 — G15€n] 7
Kg(c) = n:lJmByu,o)
. (38)

o0
=& Z[f150n —9110n — 4160 )
-1

From Egs.(23, 36~37), it is easy to know that
the SIFs, the EDIFs and the MIIFs are independent
and that they can be obtained by solving Egs.(29),
respectively. Namely, the SIFs, the EDIFs and the

MIIFs are only related to the corresponding
mechanical, electrical and magnetical loading. So
that it should be noted that for the magneto-electro-
elastically impermeable cracks, as electrical and/or
magnetical load are applied, the SIFs cannot
perfectly describe the fracture characteristics as in
the purely elastic case. Therefore, the energy release
rates (ERRs) G are introduced by calculating the
work done in closing the crack tip over an
infinitesimal distance. In accordance with the
definition of the energy release rate proposed by
[12], after a similar deriving process carried out by
Wang and Yu [13] and Feng and Su [6, 7], we can
finally obtain

6(0) =5 [Kin ©Ru (@) + Kp@Ry(0) + Ks ©F, @] (39)

where
[/aml 9121]K|||<c)+(e15;41 15011KD (@ + (11511 -e15611K B (©)

(402)

Kw(o) =
4411411 +efp 1+ 151 - caded) 21515011

_ sa1-nsakine- [E44ﬂll+flszKD(C)+(E44gll+915f15 KB©
R (40Db)

4411+ e 1+ 151 -cade?) 2505011

(15411-a15a 1K 111 (c)+(c44911+e15f15)KD<cJ—[c44e11+e125]KB(c>

Kw(e) =

(40c)

A 1AL e 1+ 151 -caded) 2450501

For magneto-electrically permeable case, the
field intensity factors and ERRs are respectively

Kin ) = lim [2(x~0)ryz (x.0) = e D cucy (41)

n=1
KD(C)::lTiKHMC) (42)
KB(C)=£KIII(C) (43)
Ca4
2
6() = i © (44)

244

6. Conclusions

A surface crack in a functionally magneto-
electro-elastic strip bonded to an elastic layer is
considered. Both impermeable and permeable
crack assumption are considere. For the
magneto-electrically impermeable cracks, the
SIFs, the EDIFs and MIIFs are, respectively,
related to applied mechanical loads, electrical
loads and magnetical loads only. The ERRs
depend on both applied loads including
mechanical, electrical and magnetical loads and
material parameters. For the magneto-
electrically permeable cracks, both magnetical
and electrical loads have no contribution to
ERRs and field intensity factors.
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