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This common failure mode for composite 

laminatesis characterised by interlaminar 
propagation of defects which can lead to a 
significant deterioration 
in performance [2].  In order to fully characterise 
interlaminar fracture toughness, it is necessary to 
study the effect of various proportions of normal and 
shear stresses at the crack tip, including pure tension 
(mode-I) and pure shear (mode-II) [3]. In this paper 
mode-II fracture will be studied via ENF and ELS 
specimens which are commonly used to evaluate the 
pure mode-II interlaminar fracture toughness [3]. 
Despite the lack of a standard to determine the 
mode-II strain energy release rate (GIIC), an 
increasing number of publications in the literature 
[1, 6-27] helps to overcome most of the issues 
relating to testing configurations such as the 
selection of a specimen type, loading rig, the 
selection of the film starter, the selection of a 
method for data analysis and identifying critical 
factors affecting the test procedure. Moreover, 
thanks to a series of recent studies, the American 
Society for Testing and Materials (ASTM) 
committee D30 on composite materials has resolved 
to adopt the end notched flexure (ENF) test as the 
standard method for determining the mode-II 
delamination toughness, GIIC, for laminated 
composites [20]. The ENF has been found to offer a 
consistent, more stable crack initiation compared to 
other test geometries [5, 9-11, 12, 14, 16, 20]. 
However, a stable crack propagation is preferentially 
obtained using end-loaded-split (ELS) specimens [8-
9, 14] for which no ASTM standards are yet 
available.  

Care must be taken during specimen 
preparation to reduce or avoid fibre pull-out, fibre 
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breakage, fibre bridging, or resin rich pockets which 
strongly affect the GIIC strain energy release rate 
measurement [3]. A non-adhesive film is essential to 
generate a starter crack and allow propagation at the 
interface of interest [6]. The film inserts used in 
ENF and ELS specimens can comprise various 
materials and thicknesses. For example, PTFE, 
aluminium, mylar and kapton can all be used with 
thicknesses varying from 10 µm to 60µm [3-4, 6-7, 
13-14, 23, 28-33]. Thinner insert foils (< 13µm) 
reduce the resin rich region ahead of the starter film 
which can otherwise give rise to GIIC values different 
from that of the bulk composite. Due to the larger 
diameter of some types of glass-fibres compared to 
carbon fibres, thicker inserts might still be suitable 
for GFRP without significantly affecting GIIC 
measurements. Some film materials, such as PTFE, 
are not suitable as inserts for higher curing 
temperatures matrix materials as they may adhere 
strongly to the matrix. Release agents applied to the 
insert foils could disperse into the adjacent matrix 
during curing and affect the matrix properties. Also 
some film materials, such as aluminium, tend to 
crimp or fold during placement or curing [3].  

It is advisable to pre-crack the specimens to 
avoid resin rich pockets and to provide a sharp initial 
crack for the subsequent mode-II test [9, 32]. Pre-
cracks can be introduced by loading the specimen in 
mode-I or driving a wedge into the specimen. The 
crack extension should be sufficiently long to bypass 
any resin rich pocket but short enough to avoid fibre 
bridging [6, 31]. 

Following specimen preparation, the test is 
usually carried out at crosshead rate of 1 mm/min [ 
5, 9, 33-34] and experimental data generated must 
be processed with an appropriate data reduction 
method. Various data reduction approaches are used 
for ENF and ELS tests. They take inspiration from 
many approaches including Classical Beam Theory 
(CBT), Timoshenko Beam Theory (TBT), Modified 
Beam Theory (MBT) or Compliance Calibration 
(CC) [7]. All theories reported above are based on 
different hypotheses, and correction factors are 
commonly applied in order to improve accuracy [4, 
6, 9, 16, 29, 33].  

Excellent review papers on novel architectures 
to improve the through-thickness properties of 
composites have been widely published in the 
literature [35-40]. A new approach based upon novel 
cross-section fibres is currently being investigated at 
the University of Bristol. Results to date suggest that 
judicious selection of fibre shape could lead to an 
increase in through -thickness strength as well as 

improvements in the fracture toughness of FRP 
composite materials [32, 41-42]. 
 

 
Fig. 1: Schematic of fibre drawing tower facility. 

2  Materials 

2.1 Fibre and pre-preg manufacture 

Solid circular and hollow shaped glass fibres 
and their pre-pregs have been manufactured at the 
University of Bristol using a bespoke fibre making 
tower facility, Figure 1. Depending on the fibre type, 
either a 6 mm circular or 9.8 mm (4 mm hollowness) 
hollow shaped borosilicate glass preform 
(DURANTM by Schott) is attached to the top of the 
fibre tower. The glass preform is drawn into a single 
filament, coated with silane coupling agent (3-
Amino-propyltrimenthoxysilane 95%, Acros 
Organics) to increase subsequent fibre-matrix 
bonding strength and wound onto drum covered with 
a Hexcel 913 epoxy resin film (42 gsm). The rate at 
which the glass preform is fed into the furnace, the 
rotational speed of the winding drum and the furnace 
temperature control the final fibre geometry. A 
further Hexcel 913 resin film is applied on top of the 
fibres to form a pre-impregnated tape which is then 
subject to a full atmospheric vacuum for 45 min at 
80°C to facilitate fibre impregnation. 
 
2.2 Sample preparation 

In accordance with AECMA standards [1], 
ESIS TC 4 Meeting [34] and Davidson et al [7], 
composite panels for each reinforcement and 
geometry were manufactured using a combination of 
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commercial Hexcel E-glass/913 epoxy and in-house 
manufactured glass fibre/Hexcel 913 epoxy pre-
impregnated tapes. Plates of 230 mm x 230 mm x 
6.4 mm (ENF) and 210 mm x 230 mm x 3 mm 
(ELS) were prepared with stacking sequences shown 
in Table 1. A 10 µm thickness PTFE starter film was 
incorporated to ensure correct crack initiation along 
the interface of interest in both unidirectional and 
cross-ply (0°/90°) panels. Standard vacuum bagging 
procedures were used and the panels were processed 
in an autoclave according to manufacturers 
recommendations at 7 bars (100 psi) and 1 hour 
dwell at 120° C for 1 hour but with a preceding of 
90 °C dwell for 30 min (recommended for parts in 
excess of 3 mm thickness). The heating rate was 2 
°C min-1 which is within the manufacturer’s 
recommended range. After the curing process was 
completed, ENF and ELS plates were trimmed and 
cut into specimens of 190 mm x 20 mm x 6.4 mm 
and 170 mm x 20 mm x 3 mm, Figure 2. Specimens 
were then subjected to an edge polishing routine to 
remove any gross cutting defects along the edges 
and to enable easier observation of crack onset. 
 
Table 1 - Details of stacking sequence for ENF and 
               ELS shaped and circular fibre specimens. 
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Fig. 2: (a) ENF and (b) ELS specimen and test 
geometry (in mm). 

3  Experimental 

3.1 Mode-I pre-cracking 

A mode-I opening load was applied to all 
specimens to propagate the crack beyond the resin 
rich pocket resulting from the PTFE film crack 
initiator. Undrilled strap hinges (85 mm x 20 mm x 
1.5 mm) were attached to the top and bottom of each 
specimen with a high peel strength epoxy resin 
(ARALDITETM 2021). A thin layer of correction 
fluid was applied to the longitudinal side face of the 
specimen, a paper scale attached and a lamp 
positioned to enhance the visibility of the crack 
front. Mode-I crack propagation was then carried out 
using a Hounsfield Electro-mechanical test machine 
with a 25 kN load cell at a rate of 5.0 mm min-1. 
Once the crack was sufficiently propagated beyond 
the resin rich zone, the specimen length was reduced 
by removal of the strap hinges. The modified ENF 
and ELS specimen dimensions were in accordance 
with AECMA standard, Davidson et al [7] and ESIS 
TC 4 Meeting [34] (Figure 2). Although the 
AECMA standard [5] and ESIS TC 4 Meeting [34] 
are only applicable to unidirectional specimens, it 
was felt that additional information could be 
obtained by also investigating cross-ply laminates. 
All laminates were made of commercial E-glass/913 
epoxy (ply thickness 0.125, fibre volume fraction 
65%, fibre diameter 12 µm) combined with in-house 
manufactured borosilicate glass fibre/913 epoxy (ply 
thickness 0.147 mm, fibre volume fraction approx. 
54% and 58% for circular and hollow shaped fibre 
respectively, Table 2). 
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Table 2: Volume fraction analysis of Results of ENF 
and ELS specimens as determined by resin 
burn-off. 

 

Specimen   type Vf (%) VM  (%) Vv (%) 
    

shaped 57.5 33.8 8.7 
    

circular 53.3 46.0 0.7 
    

 
The crack is assumed to propagate along the 

mid-plane interface, thus to ensure evaluation of 
representative GIIC(initiation) and  GIIC(propagation), several 
plies above and below the mid-plane comprise in-
house manufactured material in both circular and 
shaped fibre laminates. Due to manufacturing 
constraints, the ENF specimens were 20 mm wide 
rather than 25 mm as recommended by the AECMA 
standard [5]. However, a review of mode-II 
interlaminar fracture toughness [7] confirms the 
acceptability of this reduced dimension specimen. 
The ELS specimens were 3 mm thick. Although 
ESIS TC 4 Meeting [34] suggests a thickness of 5 
mm for glass fibre-reinforced specimen, thinner 
specimens are also admitted as long as the sample 
widths are maintained between 15 mm and 30 mm. 
 
3.2 Mode-II interlaminar fracture toughness 
testing 

3.2.1 ENF testing  

Testing was carried out via three-point bend 
flexural geometry at a rate of 1 mm min-1 under 
displacement control using a Roell Amsler HTC test 
machine with a 25 kN load cell controlled by an 
Instron 8800 controller. Eight replicates were tested 
for each of the circular and hollow shaped specimen 
interfaces investigated. Testing was considered as 
completed when the crack length was equal to half 
of the span length (75 mm).  

3.2.2 ELS testing 

Four batches (eight replicates of each interface 
type) of specimens were end tabbed with aluminium 
blocks using ARALDITE 2021 and tested using an 
Instron 4507 screw driven 200KN frame with 1KN 
load cell at a rate of 1 mm min-1. Experimental data 
were subjected to a compliance calibration 
according to ESIS TC 4 Meeting [34]. The 
associated expression for compliance, C (δ/P), 

comes from an experimental curve in which C is 
plotted against cubed crack length: 
                                C                         (1)                    3maA+=
 
where A is the initial compliance and m is the 
gradient.  
 

  
       

 
 

Fig. 3. Through-thickness SEM micrographs 
showing structure in SGF (upper) and CGF (above) 

composites. 
 

4 Results and discussion 

Through-the-thickness SEM images (Figure 3) 
show fibre’s misalignment, entrapped air bubbles 
and voids were minimal in manufactured laminates. 
Despite great care taken in manufacturing, Table 3 
indicates differences in terms of fibre volume 
fraction (3.7% higher in shaped composites) and 
overall resin volume fraction (12.2% lower in 
shaped composites) between laminates reinforced 
with the two fibre types. The amount of resin is 
thought to play a key role in mode-II interlaminar 
fracture toughness of fibrous composites. Singh and 
Partridge [43] have found that the GII strain energy 
release rate increases at interfaces with a thicker 
matrix layer, with specimens containing a resin rich 
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interface exhibiting up to 200% increase in 
delamination resistance. In accordance with the 
differences in fibre and resin volume fractions 
reported in Table 3, an image analysis approach was 
used to show that the shaped fibre packing geometry 
has a mean layer of matrix between neighbouring 
fibres approximately 50% thinner than for circular 
fibre packing geometry. Also, the different moment 
 
Table 3: Normalised GIIC(initiation) strain energy release 

rate for shaped and circular fibre composites 

 
 

 
 inertia of the two fibre types (22% higher in 

shaped fibre) is another parameter which will have a 
direct effect on the stiffness of shaped composites 
compared to circular. As the derivation of GIIC is 
strongly related to load/displacement characteristics 
of the specimen, it is expected that GIIC for a shaped 
fibre composite could be underestimated when 
compared to GIIC of a circular composite because of 
the lower compliance. In an attempt to account for 
all the above differences between the two composite 
types, a correction factor f based on the 
manufacturing parameters (Table 3) was devised. 
This correction factor was applied to both CBT3 [7] 
and CC [34] expressions for GIIC(initiation) and 
GIIC(propagation) respectively, as follows: 
 
                GIIC(normalized) = GIIC x f                           (2) 
 
where: 
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The experimental results obtained are shown 
in Table 3 and Figures 4 and 5.  
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the GIIC(initiation) value of shaped fibre specimens was 
possibly decreased by the previous mode-I damage. 
Mode-II fracture surface in shaped fibre reinforced 
laminates shows pronounced hackles (Figures 6) 
suggesting a stronger interface strength and energy 
dissipation compared to circular fibre laminates.  
 

 
 

Fig. 6. SEM micrography showing fractured surface 
from mode-I (left) to mode-II  (right) in 
ENF 0°/0° shaped specimen with fibre 

breakage and more hackles compared to 
circular. 

 

 
 

Fig. 7. SEM micrography showing ENF 0°/0° 
circular specimen clear passage from mode-I 

(left) to mode-II (right) fracture unlike in 
shaped 

 
4.2 ENF 0°/90° interface. 
During mode-I pre-crack loading, the crack has 
jumped from the 0°/90° mid-plane interface to the  
upper 90°/0° interface. In mode-II loading condition 
the crack propagation was both intralaminar and 
interlaminar in shaped and circular specimens 
(Figures 8 & 9). On average shaped fibre laminates 

 
 

Fig. 8. ENF 0°/90° shaped interface showing 
intralaminar crack growth both in mode-I 

(left) and mode-II (right) 
 

 
 

Fig. 9. ENF 0°/90° circular interface showing 
intralaminar crack growth both in mode-I 
(left) and mode-II (right) but not as much 

as for the shaped fibres 
 
have shown a 6% higher strain energy release rate, 
GIIC(initiation), compared to circular. This small 
difference is probably a consequence of the larger 
portion of intralaminar fracture noted in the shaped 
specimens. This may be explained in terms of the 
greater stress concentration associated with the 
shaped fibres [41]. Conversely, the higher stress 
concentration at the fibre/matrix interface in shaped 
composites seems to promote a more stable crack 
propagation as well as higher damage resistance 
compared to circular.   
4.3 ELS 0°/0° interface.  

ELS testing has confirmed the same trend as 
ENF testing. Figure 4 clearly shows the higher 
GIIC(propagation), strain energy release rate, for shaped 
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composite compared to circular. Moreover, shaped 
fibre specimens have shown more consistent crack 
initiation as well as more stable propagation. In both 
cases (shaped and circular) the crack path always 
propagated through in-house manufactured layers. 
Crack jumping from the mid-plane interface was 
rarely observed suggesting the suitability of the 
selected lay-ups and the specimen geometries (Table 
1). SEM analysis (Figures 10 & 11) has shown 
pronounced hackle markings as well as greater 
evidence of matrix plastic deformation on shaped 
fibre fracture surfaces compared to circular despite 
the lower resin fraction in the former (Table 2).   
 

 
 

Fig. 10. Mode-II fracture in ELS 0°/0° shaped 
composite showing marked hackling and 

matrix toughening effect despite the lower 
amount of resin compared to circular 

composite. 

4.4 ELS 0°/90° interface. 

Circular fibre cross-ply laminates are 
characterized by much greater specimen deflection 
during testing compared to corresponding shaped 
fibre laminates. In these laminates the mode-II crack 
has propagated through several plies eventually 
reaching the in-house ply - commercial ply interface 
(Figures 12 & 13). In the worst case, the  crack 

 
 

Fig. 11. Mode-II fracture in ELS 0°/0° circular 
composite showing fewer hackles and 

general matrix toughening 
 
propagation has passed into commercial ply 
interfaces within the lower arm of most circular 
specimens (Figure 13). The high specimen 
deflection was overcome by reducing the specimen 
free length with an inevitable loss of propagation 
values. However, sufficient data were obtained to 
describe the behaviour of these two composite types. 
Shaped fibre specimens have shown higher mean 
GIIC(propagation) compared to circular, but the high 
scatter observed (Figure 5) brings about some 
uncertainty. 
     

 
 

Fig. 12. ELS cross-ply (0°/90°) shaped specimen 
showing mode-II crack has jumped from the 0°/90° 
mid-plane interface to the lower layers but staying 

within in-house plies 
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Fig. 13. ELS cross-ply (0°/90°) circular specimen 
showing mode-II crack has jumped from 0°/90° 

mid-plane interface and propagated until intersection 
with commercial plies. 

 
5 Conclusions 

In this investigation, a total of sixty four 
specimens have been studied using two different 
mode-II test geometries (ENF and ELS) and two 
interfaces (0°/0° and 0°/90°) to evaluate the possible 
benefit of using shaped fibre reinforcement to 
improve fracture toughness in FRP composite 
materials. 

A combination of commercial and in-house 
manufactured pre-impregnated tape types were used 
successfully (for time saving purposes) to obtain 
valid GIIC initiation and propagation strain energy 
release rate data. 

Results have shown an increase in both 
initiation and propagation strain energy release rates 
(GIIC) in laminates reinforced using shaped fibre 
compared with those reinforced with circular fibre. 
Furthermore, despite the higher stress concentrations 
which operate in cross-ply shaped fibre laminates 
and which may effect the strain energy release rate, 
all shaped composites have shown a more stable 
crack propagation compared to circular composites. 
Further investigations are needed to better 
understand the role of the resin volume fraction in 
composites reinforced with non-circular fibres and 
to verify the significance of the improvement in 
cross-ply laminates which has not appeared as clear 
as in unidirectional shaped laminates.  
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