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Abstract  

A new approach to predict the mechanical 
behavior of general heterogeneous (composite) 
materials is presented. The eigenfunctions for the 
governing differential equation that the composite is 
subject to are derived in series format. The explicit 
form of the permissible functions that satisfy the 
continuity condition across the phase boundary is 
obtained with the help of a computer algebra system. 
The Green’s function for the composite is 
constructed from the eigenfunctions. Using the 
Green’s function, the physical field in the composite 
is expressed. Some numerical examples are shown. 
 
 
Introduction 

Finding physical fields such as stress and 
temperature distributions in general composite 
materials is a challenging task that has been studied 
for decades. The conventional macroscopic 
approach cannot account for intricate 
microstructures that are typical of modern 
composites where reinforcements include 
particulates, fibers and nanotubes. The pioneering 
work by Eshelby for an ellipsoidal inclusion inspired 
many researchers, which lead to a branch in applied 
mechanics called micromechanics [1]. The 
limitation of micromechanics is the widely used 
assumption that a composite must be infinitely 
extended and the distribution of reinforcements is 
statistically uniform. These assumptions severely 
limit the usefulness and finding physical fields such 
as stress and temperature distributions in general 
composite materials is a difficult task that has been 
studied for decades. The applicability of 
micromechanics to real-world composites is limited 
as the size of the actual composites is finite and the 
fiber distribution is not necessarily uniform. Purely 
numerical methods such as the finite element 
method or the boundary element method are 

routinely used for stress/thermal analysis of 
composites but their limitation as compared with 
micromechanics approaches is obvious. This paper 
addresses the shortcomings of both purely numerical 
and purely analytical approaches and introduces a 
semi-analytical approach to general heterogeneous 
materials. Permissible functions that satisfy the 
continuity conditions across the phase interface of a 
composite are shown to be derived using a computer 
algebra system and they are used to construct the 
eigenfunctions for the corresponding Sturm-
Liouville system. Examples of eigenfunctions for a 
medium that contains a spherical inclusion will be 
presented. 
Formulations 

The following formulations are written in terms 
of the quantities in solid mechanics but they can be 
modified to those equations in steady state heat 
conduction in composites as well. The static stress-
equilibrium equation for the displacement field, u , 
is expressed as 

( )( ) ( ) ( ) 0,C x u x b x∇ ⋅ ∇ + =  (1) 

where ( )C x  is the elastic modulus (a function of 
position), ∇ ⋅  is the divergence operator, ∇  is the 
gradient operator and b is a body force. The symbol, 
x , denotes the position vector. Equation (1) along 
with a prescribed boundary condition constitutes a 
boundary value problem. The solution to equation 
(1) can be expressed if the Green’s function, 

( )g x x′, , defined as 

( )( ) ( ) ( ) 0,C x g x x x xδ′ ′∇ ⋅ ∇ , + − =  (2) 

is known where ( )x xδ ′−  is the Dirac delta 
function [2]. Using equation (2), the displacement 
field is expressed as 

( ) ( ) ( , ') ( ') ',ou x u x g x x b x dx= + ∫  (3) 
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where 0u is a term that satisfies the prescribed 
boundary displacement condition. The stress field is 
then expressed as 

( ) ( ) ( ) ( ) ( ) ,ox x C x g x x b x dxσ σ ′ ′ ′= + ∇ ,∫  (4) 

where ( )o xσ is the stress field at the boundary. The 
solution to equation (2) is available for only a few 
simple cases. For example, if the medium is 
homogeneous, isotropic and extended to infinity, the 
Green’s function is expressed as 

{ }3

1
( ) (3 ) ( )

8 (2 )
,ij i j

im

x x
g

r r

δ
μ λ μ λ

πμ μ λ
= + + +

+
x  

(6) 

where μ and λ  are the Lame constants and | |r x= . 
There is no exact solution available when the 
medium is inhomogeneous or finite. 

It is possible to express the Green’s function in a 
series form as [3]  

( ) ( ')( ') ,m k
km
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α α
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φ φ
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∞

, =∑  
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where ( )m xαφ and αλ are the eigenfunction and the 
eigenvalue defined as 

( ( ) ( )) ( ) 0.ijkl k l j iC x x xα α αφ λ φ, , + =  (8) 

In equation (8), the repeated indices denote 
summation. The eigenfunctions are mutually 
orthogonal as 

0 if
( ) ( )

ifm nD
mn

x x dxα β α β
φ φ

δ α β
≠⎧

= ⎨ =⎩
∫  

(9) 

where mnδ  is the Kronecker delta. 

Solving equation (8) for ( )i rαφ  is just as difficult as 
solving equation (2). Therefore, an approximate 
solution to equation (8) is sought. In this 
approximation, the eigenfunction, ( )k xαφ , is to be 
approximated as a series of permissible functions as 

( ) ( ),k kx c f xα αβ β

β
φ =∑  (10)

where ( )f xβ is a permissible function chosen from 
elementary functions to satisfy the continuity 
condition of the displacement and traction force 
across the interface as well as the homogeneous 
boundary condition. The quantity, kcαβ , is the k -th 

coordinate component of the coefficient of ( )f xβ  
of the α -th eigenfunction. The Galerkin method is 
used here to determine kcαβ [4]. By substituting 
equation (10) into equation (8), 
multiplying ( )f xα on the both sides and integrate 
them over the entire domain, equation (8) can be 
converted to the following algebraic eigenvalue 
equation: 

0,ik k iA c B cγβ αβ α γβ αβ

β β
λ+ =∑ ∑  (11)

where 

( ( ) ) ( ) ,ik ijkl l jD
A C f x f x dxγβ β γ

, ,= ∫  (12)

and 

( ) ( )
D

B f x f x dxγβ β γ= .∫  (13)

Equation (11) is an algebraic eigenvalue problem 
that can be solved on a routine basis once the 
components of the matrices, ikAγβ  and Bγβ , are 
computed. Obviously, such a task requires an 
enormous amount of algebra and is best carried out 
by a computer algebra system. 

Example 

A proper choice of permissible functions is essential 
for faster convergence of the solution. Permissible 
functions are chosen so that they satisfy the given 
homogeneous boundary condition as well as the 
continuity condition across the phase boundary. For 
example, if a 2-D body is homogeneous and its 
boundary is rectangular, a permissible function can 
be chosen as 

2 2( ) ( ) ( ) i j
ij

i j

f x y a x a y b x y
,

, = − − ,∑  (14)

If a 2-D medium is extended to infinity, a 
permissible function can be chosen as 

2 2

( ) i j
ij

i j

x yf x y a x ye
,

− −, = ,∑  (15)

Note that equation (15) vanishes at infinity. 

If a 2-D medium has an inclusion with a different 
material property, a permissible function can be set 
up for each phase. For instance, one of the 
permissible functions for an infinitely extended 



 

3  

A NEW ANALYTICAL METHOD FOR PARTICULATE COMPOSITES

medium ( 2k ) with a circular inclusion ( 1k ) having a 
radius of a is expressed as 

2 2 2
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Note that equation (16) satisfies the following 
continuity conditions: 

1 2f f= ,  (17)

1 2
1 2

f fk k
n n

∂ ∂= ,
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(18)

2 mf f= ,  (19)

2
2 .m

m
ffk k

n n
∂∂ =
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(20)

Using permissible functions, the 
eigenfunctions, ( )xϕ , can be obtained by their 
combinations. The following two graphs are the first 
two eigenfunctions for the same medium used by 
equation (16). It should be noted that the two 
eigenfunctions are mutually orthogonal each other.  
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Fig. 1. Eigenfunction 1 
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Fig. 2.  Eigenfunction 2 
 
Using the eigenfunctions, the Green’s function can 
be then expressed by equation (7). With the Green’s 
function, a convolution type of integrals can express 
the physical field. Results will be reported elsewhere. 

 
Conclusions 

An analytical procedure was introduced to 
proper choice of permissible functions is important 
for faster convergence. Permissible functions are 
chosen so that they satisfy the given homogeneous 
boundary condition as well as the continuity 
condition. Application to other types of 
heterogeneous materials will be investigated. 
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