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Abstract  

In this study, multi-scale creep analysis of long 
fiber-reinforced laminates under in-plane uniaxial 
load is performed based on a homogenization theory. 
First, the homogenization theory for nonlinear time-
dependent composites is applied to long fiber-
reinforced laminates, leading to the macroscopic 
rate-type constitutive equation of laminates and the 
evolution equations of microscopic and average 
stresses in each lamina. The macroscopic 
constitutive equation is shown to have a stiffness 
tensor and a stress relaxation function which are 
evaluated explicitly in terms of the microscopic 
structure and stacking sequence of laminae. The 
present theory is then applied to analyzing the in-
plane creep behavior of unidirectional carbon 
fiber/epoxy laminates. It is thus shown that the 
theory is successful in analyzing the anisotropic 
creep behavior of unidirectional CFRP laminates. 
 
 
1 Introduction 

Long fiber-reinforced laminates are now 
important engineering materials. In general, these 
laminates consist of laminae, each of which is 
unidirectionally reinforced with long fibers. 
Macroscopic responses of laminates are therefore 
usually predicted by attaining the overall responses 
of monolayers (laminae) and then by averaging them 
in accordance with the stacking sequence of laminae. 
Appropriate methods such as the Mori-Tanaka  
theory [1] and the cell model of Aboudi [2] can be 
employed for attaining the overall responses of 
monolayers [3-6]. These models are based on 
approximate fields of microscopic stress and strain 
and are fairly successful, but may have errors 
especially when inelastic deformation occurs in 
constituents. It is, therefore, worthy developing a 
theory by which the inelastic behavior of fiber-
reinforced laminates can be simulated accurately. 

The authors constructed a homogenization 
theory for nonlinear time-dependent composites with 
periodic microstructures [7,8]. This theory is based 
on unit cell problems, in which the so-called Y-
periodicity of perturbed displacement is utilized as 
its boundary condition [9-12]. The theory analyzes 
not only the macroscopic elastic-viscoplastic 
behavior of composites but also the microscopic 
time-dependent distributions of stress and strain in 
unit cells. Ohno et al. [13] further showed that if the 
microscopic distributions of stress and strain are 
symmetric with respect to the center of each unit cell, 
the field of perturbed velocity satisfies the point 
symmetry with respect to the cell boundary facet 
centers: Consequently, semiunit cells can be taken as 
the domain of analysis to reduce computational 
efforts. The homogenization theory was thus rebuilt 
using semiunit cells and applied for computing 
elastic-viscoplastic behavior of fiber-reinforced 
unidirectional composites. 

The homogenization theory mentioned above 
does not need any approximation of microscopic 
stress and strain fields, if the Y-periodicity of 
microstructures can be assumed. Thus, we expect 
that the theory accurately predicts the macroscopic 
time-dependent behavior of fiber-reinforced 
laminates, if we can establish a framework to apply 
the theory to such laminates. In addition, we notice 
that the theory allows us to analyze the microscopic 
distributions of stress and strain in each lamina. 
These merits cannot be available if other theories are 
employed. It is, therefore, of significance to employ 
the homogenization theory for simulating the time-
dependent nonlinear behavior of fiber-reinforced 
laminates. For this reason, the author has already 
applied the theory to the elastic-viscoplastic analysis 
of CFRP laminates [14,15]. The theory, however, 
has not been applied to analyzing the creep behavior 
of laminates so far. 

In this paper, the in-plane creep behavior of 
long fiber-reinforced laminates at high temperature 
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is analyzed based on the homogenization theory for 
nonlinear time-dependent composites. The 
macroscopic equation is shown to be characterized 
by a stiffness tensor and a stress relaxation function 
which are evaluated in terms of the microscopic 
structure and stacking sequence of laminae. Using 
the present theory, the analysis of in-plane creep 
deformation of unidirectional laminates at high 
temperature is performed. It is thus shown that the 
analysis results agree well with the experimental 
data. Moreover, the off-axis creep behavior with 
seven kinds of off-axis angles is analyzed, showing 
the marked in-plane creep anisotropy of the 
unidirectional laminates. 
 
2 Theory 

2.1 Basic Assumptions 

Let us consider a laminate in which long fiber-
reinforced laminae are stacked symmetrically as 
shown in Fig. 1. Let us assume that the fibers are 
arranged unidirectionally and periodically in each 
lamina, as illustrated in the figure, and also that the 
fibers deform elastically while the matrix exhibit 
elasticity and viscoplasticity. Let N  and ( )f α  be the 
number of laminae and the volume fraction of the 
α th lamina, respectively. It is convenient to use 
three kinds of Cartesian coordinates, i.e., iX  
( 1, 2, 3)i =  for the laminate, ( )

ix α  ( 1, 2, 3)i =  for the 
α th lamina, and ( )

iy α  ( 1, 2, 3)i =  for the unit cell in 
the α th lamina, ( )Y α , as shown in Fig. 1. The 2X  

axis is taken in the stacking direction. The ( )
2x α -axis 

is parallel to the 2X -axis and thus directed 
perpendicularly to the lateral surface of the α th 
lamina. The ( )

3x α -axis is taken in the fiber direction 
of the α th lamina and makes an angle ( )αθ  with the 

3X  axis. The ( )
iy α -axis is parallel to the ( )

ix α -axis 
but is employed solely for the unit cell ( )Y α . 

Let us assume further that the laminate which 
is infinitely large in the 1X - and 3X -directions, is 
subject to in-plane loading, giving rise to no bending 
because of the symmetry in stacking. Then, the 
macroscopic stress in the laminate, ijΣ , and the 
overall stresses in laminae, ( )

ij
αΣ , satisfy 

 ( ) ( )

1

N

ij X ijf α α

α

Σ Σ
=

=∑ , in-plane components, (1) 

 22 21 23 0Σ Σ Σ= = = , (2) 

 ( ) ( ) ( )
22 21 23 0X X X
α α αΣ Σ Σ= = = , 1, 2, , Nα = … , (3) 

where ( )X  stands for the components with respect 
to the iX  coordinate system. The macroscopic strain 
in the laminate, ijE , and the overall strains in 
laminae, ( )

ijE α , can be expressed as 
( )

11 11XE E α= , ( )
33 33XE E α= , ( )

13 13XE E α= , 1, 2, , Nα = … ,
  (4) 

 ( ) ( )
22 22

1

N

XE f Eα α

α=

=∑ , (5) 

(a) Laminate (b) Lamina (c) Unit Cell 

α
N
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2 2( )x Xα
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3x α
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1
2

1X

2X
3X

Fig. 1.  Structure of a laminate and three kinds of Cartesian coordinates. 
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 21 23 0E E= = , (6) 

 ( ) ( )
21 23 0X XE Eα α= = , 1, 2, , Nα = … . (7) 

Equations 3 and 7 also hold with respect to the ( )
ix α  

coordinate system: 

 ( ) ( ) ( )
22 21 23 0x x x
α α αΣ Σ Σ= = = , 1, 2, , Nα = … , (8) 

 ( ) ( )
21 23 0x xE Eα α= = , 1, 2, , Nα = … . (9) 

2.2 Homogenization in Laminae 

Let us denote the microscopic distributions of 
stress and strain in the unit cell ( )Y α  of the α th 
lamina as ( ) ( , )ij tασ y  and ( ) ( , )ij tαε y , where y  and t  
denote iy  and time, respectively. Then, the overall 
stress and strain in the α th lamina, ( )

x ij
αΣ  and ( )

x ijE α , 
are evaluated by homogenizing ( ) ( , )ij tασ y  and 

( ) ( , )ij tαε y  using a volume average 

 
( )

( )
( )

1# #
Y

dY
Y α

α
α

= ∫ , (10) 

where ( )Y α  indicates the volume of ( )Y α . Thus, 

 ( ) ( )
x ij ij

α αΣ σ= , (11) 

 ( ) ( )
x ij ijE α αε= . (12) 

We assume that the microscopic stress ( )
ij
ασ  and 

strain ( )
ij
αε  are related by a constitutive relation 

 
( ) ( ) ( ) ( )[ ]ij ijkl kl klcα α α ασ ε β= −�� , (13) 

where ( )⋅  denotes the differentiation with respect to 
t , and ( )

ijklc α  and ( )
kl
αβ  indicate elastic stiffness and 

viscoplastic rate satisfying ( ) ( ) ( ) ( )
ijkl jikl ijlk klijc c c cα α α α= = =  

and ( ) ( )
kl lk
α αβ β= , respectively. It is noted that ( )

ijklc α  
and ( )

kl
αβ  change from constituent to constituent in 

each lamina, and that ( )
kl
αβ  vanishes in the fibers. 

Then, we can show the following relations 
which satisfy all fundamental equations such as the 
equilibrium equation of stress, the relation between 
displacement and strain and the constitutive relation 
[7,8]: 

 ( ) ( ) ( ) ( )( , ) ( , ) ( ) ( , )ij ijkl x kl ijt a t E t r tα α α ασ = −y y y�� , (14) 

 ( ) ( ) ( ) ( )
x ij ijkl x kl ija E rα α α αΣ = −�� , (15) 

where 

 ( )( ) ( ) ( )
,

kl
ijkl ijpq pk ql p qa cα α αδ δ χ= + , (16) 

 ( )( ) ( ) ( ) ( )
,ij ijkl kl k lr cα α α αβ ϕ= + . (17) 

Here, ijδ  denotes Kronecker’s delta, ,( ) i  indicates 
the differentiation with respect to iy , and ( )kl

i
αχ  and 

( )
i
αϕ  are the functions to be determined by solving 

boundary value problems 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , ,

kl
ijpq p q i j ijkl i jY Y

c dY c dY
α α

α α α α α α αχ = −∫ ∫v v ,(18) 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, , ,ijpq p q i j ijkl kl i jY Y

c dY c dY
α α

α α α α α α α αϕ β= −∫ ∫v v ,(19) 

where ( )
i
αv  signifies any Y -periodic velocity field 

defined in ( )Y α  at t . 
2.3 In-Plane Elastic-Viscoplastic Constitutive 
Equation of Laminates 

Solving Eq. 15 for ( )
x ijE α�  and transforming the 

resulting equation to a matrix form gives: 

 { } { } { }( ) ( ) ( ) ( )

6 1 6 6 6 1 6 1x xE B Cα α α αΣ
× × × ×

 = + 
� � .(20) 

Then, Eqs. 8 and 9 allow the above equation to be 
reduced to 

 { } { } { }( ) ( ) ( ) ( )

3 3 3 13 13 1
x xE B Cα α α αΣ

× ×××
 = + 

� � ,(21) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
22 21 11 23 33 26 31 22x x x xE B B B Cα α α α α α α αΣ Σ Σ= + + +� � � � ,(22) 

where ( )−  stands for the in-plane parts, i.e., 

 { } { }T( ) ( ) ( ) ( )
11 33 31x x x x

α α α αΣ Σ Σ Σ=� � � � , (23) 

 { } { }T( ) ( ) ( ) ( )
11 33 312x x x xE E E Eα α α α=� � � � , (24) 

and so on. Here T( )  denotes the transpose. 
Now, let us introduce further the in-plane vectors of 

( )
X ij

αΣ�  and ( )
X ijE α� , i.e., 

 { } { }T( ) ( ) ( ) ( )
11 33 31X X X X

α α α αΣ Σ Σ Σ=� � � � , (25) 

 { } { }T( ) ( ) ( ) ( )
11 33 312X X X XE E E Eα α α α=� � � � . (26) 
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Then, since the ( )
1x α - and ( )

3x α -axes make 
respectively an angle ( )αθ  with the 1X - and 3X -
axes (see Fig. 1), we have 

 { } { }( ) ( ) ( )
x XPα α αΣ Σ =  
� � , (27) 

 { } { }( ) ( ) ( )
x XE Q Eα α α =  
� � , (28) 

where 

 

2 2( ) ( ) ( ) ( )

2 2( ) ( ) ( ) ( ) ( )

2 2( ) ( ) ( ) ( ) ( ) ( )

2

2

c s c s

P s c c s

c s c s c s

α α α α

α α α α α

α α α α α α

            
      = −            
    − −        

, (29) 

 

2 2( ) ( ) ( ) ( )

2 2( ) ( ) ( ) ( ) ( )

2 2( ) ( ) ( ) ( ) ( ) ( )2 2

c s c s

Q s c c s

c s c s c s

α α α α

α α α α α

α α α α α α

            
      = −            
    − −        

.(30) 

 ( ) ( )cosc α αθ≡ , ( ) ( )sins α αθ≡  (31) 

Substituting Eqs. 27 and 28 into (21) yields 
 { } { }1 1( ) ( ) ( ) ( ) ( )

X XP B Q Eα α α α αΣ
− −

     =      
��  

 { }1 1( ) ( ) ( )P B Cα α α− −
   −     . (32) 

Finally, substituting Eqs. 32 and 4 into Eq. 1, we 
obtain a macroscopic in-plane constitutive equation 

 { } { } { }A E RΣ  = − 
�� , (33) 

where 

 
1 1( ) ( ) ( ) ( )

1

N

A f P B Qα α α α

α

− −

=

       =       ∑ , (34) 

 { } { }1 1( ) ( ) ( ) ( )

1

N

R f P B Cα α α α

α

− −

=

   =    ∑ . (35) 

It is noted that A    and { }R  in the macroscopic 
constitutive relation (33) depend on ( )f α , ( )αθ  and 

( )B α   , which are evaluated in terms of the stacking 
sequence and microscopic structure of laminae. 
2.4 Computation 

Let us suppose that the history of either ijΣ  or ijE , 
or a combination of them, is prescribed, and that the 
values of ( )

x ij
αΣ and the distributions of ( )

ij
ασ  and 

internal variables in ( )Y α  are known in all laminae at 
a current time t . Then, the increments in an interval 
from t  to t t∆+  are computed as follows: 
(1) The boundary value problems Eqs. 18 and 19 are 

solved using FEM to determine ( ) ( , )kl
i tαχ y  and 

( ) ( , )i tαϕ y , where 1, 2, , Nα = … . 
(2) Compute ( )

ijkla α  and ( )
ijr α , leading to ( )B α    

and { }( )C α  in Eq. 21 and further to A    and 
{ }R  using Eqs. 34 and 35.  

(3) Determine the unknown components of { }Σ�  and 
{ }E�  using Eq. 33 with the prescribed 
components of { }Σ�  and { }E� . 

(4) Using Eqs. 27, 28 and 32 with 4, determine 
{ }( )

x
αΣ�  and { }( )

xE
α� . 

(5) From Eqs. 22 and 14, evaluate ( )
22xE
α�  and { }( )ασ� . 

(6) Calculate the increments in the interval from t  to 
t t∆+  as ij ij t∆Σ Σ ∆= � , ( ) ( )

ij ij
tα α∆σ σ ∆= � , etc., and 

add the increments to the current values. 
 
3 Analysis 

3.1 Long Fiber-Reinforced Laminate and 
Loading conditions 

In the present analysis, we considered a 
unidirectional carbon fiber/epoxy laminate 
(T800H/#3631, TORAY) as the simplest case of the 
long fiber-reinforced laminates. For this laminate, 
Two kinds of creep analyses were performed. First, 
the 45° off-axis creep behavior of the laminate at 
100°C is analyzed at three kinds of creep stress 
levels. Then, the creep deformations of the laminate 
at a constant creep stress (70MPa) and high 
temperature (100°C) are simulated with seven kinds 
of off-axis angles, i.e., ψ =0°, 10°, 30°, 45°, 60°, 
75°, 90°. The creep analysis of multi-directional 
laminates will be dealt with in our future works. 
3.2 Fiber Arrangement 

The arrangement of carbon fibers, which was 
unidirectional in the ( )

3x α  direction, was modeled to 
be hexagonally periodic on the ( ) ( )

1 2x xα α−  plane in 
each lamina, as illustrated in Figs. 1 and 2(a). This is 
an idealization of the random distribution of fibers 
on that plane. The idealization can be justified as 
follows: The hexagonal periodicity of carbon fiber 
arrangement gives rise to the transverse quasi-
isotropy not only in elasticity but also in 
elastoviscoplasticity [7,8]. Such isotropy matches 
with the transverse isotropy brought about by the 
random distribution of fibers on the ( ) ( )

1 2x xα α−  plane. 
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( )
1x α

( )
2x α

(a) 

The hexagonal periodicity is therefore an 
appropriate assumption as far as the overall response 
of each lamina is concerned. 

According to the above assumption, the unit 
cell ( )Y α  was chosen to be hexagonal for all laminae, 
as shown in Fig. 2(b); fV  was taken to be 51.7%. 
Here it is noted that ( )Y α  was taken to be 2D rather 
than 3D since each lamina was assumed to have no 
microscopic variation in the fiber direction [8,16]. 
Since the hexagonal unit cell has the point symmetry 
with respect to the cell center, it is sufficient to 
consider half of the unit cell as the domain of 
analysis for solving the boundary value problems 
Eqs. 18 and 19 [13-15]. Hence, the upper half of the 
unit cell was considered and was divided into finite 
elements using four-node isoparametric elements, as 
shown in Fig. 2(b). 
3.3 Microscopic Constitutive Equations 

The carbon fibers were regarded as a 
transversely isotropic elastic material. Consequently, 
the fibers were supposed to have five independent 
elastic constants, i.e., two Young’s moduli 1fE  and 

3fE , two Poisson’s ratios 12fν  and 31fν , and one 

shear rigidity 31fG , where the subscripts 1, 2 and 3 
signify the ( )

1y α , ( )
2y α  and ( )

3y α  directions, 
respectively. Table 1 shows the five constants of 
fibers employed in the present work; 3fE  was 
provided by the manufacturer, while other constants 
were obtained by referring to Kriz and Stinchcomb 
[17]. 

The epoxy matrix, on the other hand, was 
regarded as an elastic-viscoplastic material 
characterized as [14,15] 

0
1 3

2 ( )
ijpm m e

ij ij kk ij p
m m e

n s
E E g
ν ν σ

ε σ σ δ ε
ε σ

 +
= − +  

 
� �� � ,(36) 

where mE , mν  and n  are material constants, ( )pg ε  
is a material function depending on accumulated 
viscoplastic strain ( ) ( ) 1/ 2[(2 / 3) ]p

ij ij dtα αε β β= ∫ , 0
pε�  is 

a reference strain rate, ijs  indicates the deviatoric 
part of ijσ , and 1/ 2[(3/ 2) ]e ij ijs sσ = . The material 
constants and material function in Eq. 36 were 
determined by simulating the 45°  off-axis tensile 
tests of the unidirectional laminate at 33E� =1.0 and 
0.01 mm/min. This was because the effect of matrix 
viscoplasticity was expected to be significant in such 
off-axis tests. Table 1 lists the material parameters 
determined. 
3.4 Results of Analysis 

First, Fig. 3 shows the high temperature 
(100°C) creep curves of the unidirectional laminate 
with the 45° off-axis angle at three kinds of stress 
levels, i.e. 35, 51 and 68MPa, respectively. In the 
figure, the solid lines indicate the analysis results 
obtained using the present theory, whereas the 
markers stand for the experimental data [18]. As 
seem from the experimental data, the creep strain 
becomes larger as the creep stress level increases, 
showing the clear stress dependence of the in-plane 
creep behavior. Such creep behavior of the 
unidirectional CFRP laminate is successfully 
predicted by the present theory. 

(b) 

( )
1y α

( )
2y α

Fig. 2. Microstructure of laminae; (a) hexagonal 
arrangement of fibers, and (b) unit cell ( )Y α  and 

finite element mesh. 

4
1 12

5
3 31

4
31

3

4
0

0.185

MPa (stress), mm/mm (strain), s (time).

1.58 10 0.49
Carbon fiber 2.94 10 0.28

1.97 10

3.6 10 0.35
Epoxy 1.67 10 35

.15 4( ) 1 ( ) 10

f f

f f

f

m m
p

p p

E
E
G

E
n

g

ν
ν

ν
ε
ε ε

� −

= × =
= × =
= ×

= × =
= × =

= +

Table 1.  Material constants. 
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Next, the high temperature (100°C) creep 
behavior of the unidirectional laminate with seven 
kinds of off-axis angles at a constant stress is shown 
in Fig. 4. The off-axis angles are ψ =0°, 10°, 30°, 
45°, 60°, 75°, 90°, and the constant stress is 70MPa. 
From this figure, we can find that the creep strain 
hardly occurs at ψ =0° and 10°. By contrast, the 
creep strain suddenly increases at ψ =30°, and can 
be clearly observed. The creep strain increases as the 
off-axis angle increases, and reaches the maximum 
at ψ =45°. After that, the creep strain decreases as 
the off-axis angle increases. These results indicate 
the marked in-plane creep anisotropy of the 
unidirectional CFRP laminate. 
 
4 Conclusions 

In this study, the homogenization theory for 
nonlinear time-dependent composites developed by 
the present authors was employed for predicting the 
in-plane high temperature creep behavior of long 
fiber-reinforced laminates. For the present analysis, 
we derived a macroscopic rate-type constitutive 
equation of laminates as well as evolution equations 
of microscopic and average stresses in each lamina 
based on the homogenization theory. The 
macroscopic constitutive equation was shown to 
have a stiffness tensor and a stress relaxation 
function to be evaluated in terms of the microscopic 
structure and stacking sequence of laminae. Using 
the present theory, the in-plane creep analysis of the 
unidirectional CFRP laminate at high temperature 
was performed. It was thus shown that the present 
theory predicted very accurately the macroscopic 

creep behavior of the laminate. It is also shown that 
the laminate had marked in-plane anisotropy with 
respect to the creep behavior. The creep analysis of 
multi-directional laminates should be performed in 
our future works. 
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