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Abstract  

A framework for calculating the non-local, 
asymmetric atomic stress has been developed. The 
approach is based on the assumption that stress is 
derivable from an energy expression, i.e. an atomic 
force field. The atomic stress is linked to the first 
Brillouin zone or equivalently 3D Voronoi element 
surrounding the atom. Atomic displacements from 
e.g. MD simulations are used as input to the 
framework. The discrete nature of the atomic scale 
is linked to continuum theory through the Finite 
Element formalism using the interpolation functions 
of 3D Voronoi elements. The advantage of this 
approach compared to using the Clausius virial 
theorem is that the stresses from the present 
approach is defined in the same way as the non-
local stress of traditional continuum mechanics so 
the relation of the present atomic stress  and the 
traditional Cauchy stress is strongly anticipated but 
remains to be proved  
 
 
1 Introduction  

Materials reinforced with nano-sized structural 
elements have attracted very much attention after the 
publication of results indicating that these materials 
possessed tremendous potential compared to the 
bulk materials. Probably the most well known nano-
element is the carbon nanotube, which with its 
perfect structure and excellent mechanical 
properties, created a tremendous focus on the 
possibility of using the carbon nanotubes as 
reinforcement in composite materials. 

Addition of only a small fraction of nano-sized 
elements to a bulk material has shown to increase 
properties, such as thermal stability, tensile strength 
and stiffness. Only 4.2 weight percent of 
montmorillonite silicate embedded into the nylon-6 
polymer increased the tensile modulus by a factor of 
1.9, tensile strength by a factor of 1.6 and heat 

distortion temperature by a factor of 1.7, as 
compared to the neat bulk polymer [1].  For Epoxy 
composites the effect of embedding 15 weight 
percent of montmorillonite silicate caused a 10-fold 
increase of both stiffness and strength [2]. 

In [3] it was proved experimentally that micro- 
or nano-rotations occur in nano-scale materials and 
that these deformation mechanisms are especially 
important. As a direct consequence of these 
observations it is crucial that in order to exploit the 
potential of nano-materials, theoretical models must 
be formulated which take the actual deformation 
mechanisms into account. A continuum theory 
which deals with microdeformations, is the so-called 
micromorphic continuum theory proposed in a 
number of papers in the 1960'es and collected in [4]. 

Several approaches have been taken to 
determine continuum mechanics properties of nano 
elements and it seems that at a certain point a 
continuum quantity must be introduced in order to 
relate the measured quantities to traditional 
continuum mechanics [5,6]. 

Another challenge is the fact that the stresses 
obtained from the Clausius virial theorem is not 
directly related to either the Cauchy stress or the 
Piola--Kirchhoff stress of continuum mechanics 
since neither of these depend on velocity but merely 
on force [7,8]. 

An approach to link the nanolevel to 
continuum level is to apply the finite element 
method. This was done by [9]. The molecular 
structure is discretised using 3D tetrahedral 
elements. However, one drawback of this approach 
is that it becomes computationally intensive for large 
ensemble of atoms due to the large number of 
element nodes. 

As a means to avoid using continuum measures 
on the nano-scale an alternative approach is taken in 
the present paper. A theoretical approach, 
considering the deformations on the atomic level, is 
derived to determine the stress on the atomic scale. 

AN APPROACH TO BRIDGE ATOMIC- AND CONTINUUM-
STRESS 

 
J. Schjødt-Thomsen and R. Pyrz  

Aalborg University, Dept. of Mech. Engng., Pontoppidanstraede 101, DK-9220 Aalborg East, 
Denmark  

 
Keywords: Atomic stress, Non-local, Strain gradient, Microdeformations 



JAN SCHJØDT-THOMSEN, R. Pyrz  

2 

The stresses due to the deformations are obtained 
through derivatives of an atomic force field and 
integration over the volume of the first Brillouin 
zone (or Voronoi polyhedron). Thus, the stress is 
non-local since it involves an integration and the 
stress tensor may be non-symmetric in its indices 
and, in order to make this a continuous theory the 
interpolation functions from 3D Voronoi finite 
elements are applied. Using the Voronoi elements 
makes this approach strain gradient based as well, 
since it incorporates the strain measure proposed by 
[10]. 

 
2 Theory 

The basic working assumption is that the 
relation between stress σij and strain εij  
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is applicable at atomic level also. In that case W is 
the atomic force field. Equation (1) is in fact what 
is used in many molecular mechanics simulations. 
However, the problem is that the volume V is not 
well defined, but is usually chosen as a bounding 
box surrounding the considered molecules. 
Furthermore, the atomic stress must be non-local 
and allow for asymmetry in the stress tensors 
indices. First the atomic potential, W, is rewritten 
as 
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where w is the potential for atom I occupying 
volume ΩI. 
This gives an expression for the atomic stress for 
atom I as 
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where Ω is the volume of the 3D Voronoi 
polyhedron surrounding atom I and the integration 
is introduced to make the stress nonlocal. The 
asymmetry of the stress tensor is ssured if the 
derivative of the potential is taken with respect to 
the displacement gradient, Dij  
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  since 
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Thus, the final expression for the stress of atom I 
becomes 
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which is non-local and may be asymmetric in its 
indices. However, it is easily seen that replacing 

ijD /2 with εij gives (σij+ σji)/2 which is clearly the 
symmetric part of the stress tensor. 

 
2.1 Atomic Force Field 

Depending on the material under study, the 
atomic force field may not be the same in all cases, 
but Eq. 6 is considered to be generally applicable 
and most importantly not restricted to a specific 
force field. 
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Fig. 1. Deformation modes. 
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However, in the present study the ”COMPASS” 
force field, [11], is taken as a starting point to 
illustrate the applicability of the method. The 
deformation modes are shown in Fig. 1 and the 
COMPASS force field is given as 
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This force field contains basically two 

categories of terms, i. e. valence- and nonbond 
interaction terms. Terms containing b represent 
stretching of bonds, terms with θ represents bending 
of bonds, terms with φ represents torsion of bonds 
and terms with χ 
represents out of plane bending (”wagging”). 
Additionally, there are 6 cross coupling terms where 
terms with (b,b0) represent stretch–stretch, terms 
with (θ, θ0) represent bend–bend, terms with (b, θ) 
represent stretch–bend, terms with (b, φ) represent 
stretch–torsion, terms with (θ; φ) and (θ, θ’, φ) 
represent bend–torsion modes. Finally, the term 

involving qi represents Coulombic electrostatic 
interaction and the last terms is the Lennard– 
Jones potential for van der Waals interaction. 
 

Since the atomic force field, w, is not an 
explicit function of the displacement gradient, Eq. 7 
needs reformulation in terms of quantities related to 
the displacement gradient in order to calculate the 
derivatives according to Eq. 6. 

Terms involving b and b’ correspond to a 
change of distance and can be related to the strain 
tensor as 
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where r0,I and r0,J are the position vectors of atom I 
and J, respectively, IJ

in ,0 is component i of the unit 
vector connecting atom I and J in the undeformed 
state and |.| denotes the length of a vector. Eq. 8 in 
terms of displacement gradients, is then 
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For the bending terms the same approach is 

used as for the derivation of shear strain, but without 
the assumption of an initial right angle, i.e. 
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Now, since it is θ which enters the atomic force 

field, then a MacLaurin series, [12], is used, i.e. 
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which makes the stress nonlinear in jiu , . 
Now considering the torsional deformation 

mode in Fig. 1, the torsion terms are obtained as 
follows, see Fig. 2. The vectors rIJ and rKL are 
projected onto a plane orthogonal to the vector 
connecting atom I and atom K. These projections are 
denoted as pIJ and pKL , respectively. The angles θ1 
and θ2 are obtained as 
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The projections pIJ and pKL are obtained as 
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Fig. 2. Projection of vectors rIJ and rKL onto plane A. 
 

Now the torsional angle which lies in plane A is 
obtained as the angle between pIJ and pKL. cosφ is 
then found in a manner analogous to the bending 
terms, i.e. 
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where IJ

ip is component “i” of vector pIJ. 
Subsequently using the trigonometric multiple 
angle relations 
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The other “mixed” terms are obtained using the 

expressions derived previously. So the term to be 

dealt with now is the Lennard—Jones potential. 
The ratios of distances can be rewritten as 
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Finally, the Coulomb electrostatic interaction is 

taken into account using the same approach as for 
the Lennard—Jones  potential, i.e. 
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Now all the terms of Eq. 7 have been expressed 

through the displacement gradient. Then the 
differentiation must be carried out with respect to 
the displacement gradient according to Eq. 6, to 
give the stress of atom I. The differentiations are 
rather straight forward, bearing in mind that 
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from which 
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2.2 Discrete/Continuous 

 
In order to link the discrete nature of the atoms 

with continuum mechanics the Finite Element 
formalism is used. The continuous displacements, 
{u} are replaced by their discrete displacements, 
{d}, via the elements interpolation functions, [N], 
as 
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In the present study the molecular structure is 
discretised into 3D Voronoi elements. This 
approach enables morphological characterization of 
the structure and provides the volume for the 
integration of Eq. 6. Using the FE formalism in 
conjunction with Eq. 6, requires the derivatives of 
the shape functions with respect to spatial 
coordinates 
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which are used to replace ui,j in Eq. 6.  
  

The shape functions of the 3D Voronoi 
elements are expressed in terms of geometric 
quantities of the elements, see Fig. 3. For 
illustrative purposes, it suffices to consider the 2D 
element. The interpolation functions are 
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where Φp is given as 
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where sp is the length (area in 3D) of edge Fp (face 
in 3D) of the element and hp is the distance 
between point x within the element and node np. 
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Fig. 2. 2D Voronoi element. 
 

Using this approach introduces quantities 
related to those used in the atomic interaction cell 
strain, c

ijε , of [10], which is based on the vector, h, 
collinear with the line joining point x within the 

element and node np. The length of this vector, h, is 
equal to sp. The atomic interaction cell strain is the 
dyadic product of the displacement vector and h, 
i.e.  

 
c
j

c
ic

c
ij uh

V
1

=ε                (23) 

 
this shows that the present approach to some extent 
incorporates the atomic interaction cell strain and 
makes it strain gradient based as well. 
 

Finally, when the stress from atom I is 
obtained the stress for larger domains may simply 
be obtained as a volume averaging over the volume 
considered i. e. 
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Consequently the continuum stress can be 

thought of as a volume average of the atomic 
stress. 
 

3 Conclusions 

 
In the present paper a framework for 

calculating the non-local, strain gradient based, 
asymmetric atomic stresses has been developed. The 
approach is based on the assumption that the stress is 
derivable from an energy expression, which is based 
on a general atomic force field. The atomic force 
field differentiated with respect to the displacement 
gradient, consequently allowing for an asymmetric 
stress tensor. 

The atomic stress in the present approach is 
linked to the first Brillouin zone or equivalently the 
Voronoi cell surrounding the atom, so no averaging 
over an arbitrary volume is carried out. 

To illustrate the principle of the framework the 
versatile force field - the COMPASS force field - 
has been used. However, it should be emphasized 
that the theory itself is general and not limited by 
choice of force field. The atomic displacements for 
the stress calculations can be obtained from e.g. a 
molecular dynamics simulation. 

This approach is clearly discrete due to the 
discrete nature of the atoms, however, the link to a 
continuum theory is established through the finite 
element formalism using the interpolation functions 
of 3D Voronoi elements. The elements have the 
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advantage that their interpolation functions only 
depend on the positions of the nodes of the elements 
and not on the shape and the principal forms of the 
interpolation functions are the same no matter how 
many nodes the element contains. Finally, the 
advantage of this approach compared to using the 
Clausius virial theorem is that the stress from this 
approach is defined exactly as the non-local stress of 
traditional continuum mechanics so the relation 
between the present atomic stress and the traditional 
Cauchy stress is strongly anticipated, but remains to 
be proved.  
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