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Abstract  

The single fibre pull-out (SFPO) test has been 
used to investigate the interfacial interaction 
between a glass fibre and a polyester matrix system. 
However, mechanical data alone cannot explain 
fully the mechanisms of failure, and time-of-flight 
secondary-ion mass spectrometry (ToF-SIMS) has 
been utilised to gain insight into the interfacial 
chemistry of adhesion.  

The present work employs ToF-SIMS for the 
forensic examination of fibre surfaces following a 
SFPO test. Regions of interest have been selected for 
retrospective spectral analysis. 

Results are presented which lead to the 
description of a failure model based upon these 
complementary analytical techniques. ToF-SIMS has 
revealed a difference in the surface chemistry at the 
fibre tip compared to the bulk of the pulled out 
region, which correlates with stress transfer models 
in the literature showing higher stress states existing 
at the embedded fibre tip region. 

The application of the methodology to nano-
modified polyester matrix composites is discussed. 
 
 
1 Introduction  

The mechanical properties of fibre reinforced 
composite (FRC) materials depend critically upon 
the nature of the interface between the polymeric 
matrix and the reinforcing fibres.  

Interfacial properties can be investigated by 
several means; macromechancial tests such as 
inter/intra laminar shear stress measurements; and 
micromechanical tests such as the single fibre pull-
out (SFPO), single fibre fragmentation test (SFFT), 
and microdroplet tests [1]. These micromechanical 
tests utilise model specimens which examine the 
interfacial parameters of a composite system at a 
constituent level. 

A particular issue with these micro-mechanical 
tests is the number of data reduction methods 
employed by different researchers particularly for 
the SFFT and SFPO tests. 

Given the difficulties in understanding and 
interpreting the mechanical data in isolation, 
additional information would be useful to assist 
explaining the failure mechanism(s). This may take 
the form of online observation of the stress 
distribution, or through some form of post analysis. 

Further insight into the deformation 
micromechanics can be gained by utilising 
spectroscopic methods to study the FRC interface. 
By far the most widely used approach is that of 
Raman spectroscopy to deduce the interfacial shear 
stress (IFSS) distribution along embedded carbon or 
aramid fibres [2,3]. Microscopy and surface 
analytical techniques have also been used to provide 
morphology and chemical interaction information at 
composite interfaces [3-6]. 

Secondary-ion mass spectrometry (SIMS) is a 
particularly useful technique in characterising FRC 
fracture surfaces [7]. Its use in the fractographic 
studies of FRC materials enables the precise locus of 
failure to be determined as interfacial, between fibre 
and matrix; cohesive, within the matrix; or even 
within the fibre-matrix interphase. Very thin 
polymeric layers can be detected increasing the 
chemical knowledge of a failure to complement 
mechanical data and fractographic observations.  

Preliminary investigations of the glass 
fibre/polyester matrix interface using the SFPO test 
and time-of-flight secondary-ion mass spectrometry 
(ToF-SIMS) have been conducted. These 
investigations located a change in surface chemistry 
around the pulled-out fibre tip region [8,9]. 

Stress transfer models predict a change in the 
stress state surrounding the embedded fibre tip, as 
seen in Figure 1 [10]. In order to investigate this, a 
new methodology to study the interfacial chemistry 
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associated with the pulled-out fibre surface after 
SFPO testing, has been devised.  

In this work the objective is to use 
spectroscopy methods to determine interface 
chemistry directly using ToF-SIMS, and SFPO tests 
to investigate the fibre/matrix interface of polyester 
matrix composites. 

On the basis of the results to be presented, a 
failure model has been proposed which has utilised 
the complementary analytical techniques of surface 
analysis and fractography to assist explanation of the 
deformation micromechanics and supplement the 
mechanical data. The results show that there is a 
change in the pulled-out fibre tip surface chemistry 
caused by the increased stress state surrounding the 
fibre tip, leading to a change in the local failure 
mechanism. Further work applying the methodology 
described to investigate nano-modified resin systems 
is proposed.   

 

 
Fig. 1. IFSS distribution along embedded fibre 
length in an SFPO specimen estimated using the 
shear-lag approach, after Pisanova et al [10] 
 
2 Materials  

 The resin under investigation was an 
unsaturated polyester resin, (Crystic 2-406PA, Scott-
Bader) supplied without the addition of the silica 
thixotropic agent. The resin was mixed and cured 
according to the manufacturer’s specification. Sized 
single glass fibres (2001/600TEX, PPG, NC, USA) 
were used to manufacture SFPO specimens. 
 Nano-modification of the polyester resin 
was made by incorporating phenyl organically 
modified silica particles (ormosils), with 
approximate diameter of 150 nm, supplied by the 
University of Surrey Chemistry Department. 
Ormosil manufacture and particle dispersion details 
are explained elsewhere [11,12]. 
 
3 Experimental Techniques  

Based upon preliminary investigations, a 
holistic analytical approach has been devised to 

analyse the SFPO specimen systematically from 
“cradle-to-grave” using reflected light microscopy 
(RLM) and ToF-SIMS both pre- and post- 
mechanical testing, and scanning electron 
microscopy (SEM) (only after pull-out, as the 
sample preparation required a gold sputter coating 
therefore altering the surface composition).  

In order to conduct such analyses and 
ensuring the same analysis region was used 
throughout, a specially designed mounting cradle 
was used. The cradle griped the SFPO specimen and 
could be interchangeably mounted to the ToF-SIMS 
sample platen, RLM microscope and SEM sample 
stage. The details of this procedure have been 
previously described [13]. 

ToF-SIMS imaging has been used for the 
forensic examination of fibre surfaces following the 
SFPO test. Regions of interest have been selected for 
retrospective analysis. Multivariate techniques have 
been applied to assist the identification of regions of 
chemical similarity, enabling better image 
segmentation and removal of topographic effects 
[14,15]. 
 
4 Results and Discussion  

4.1 Mechanical data 

A force versus extension plot from an SFPO 
test can be seen in Figure 2. This follows the 
expected shape where there is an initial steep rise 
corresponding to the fibre debonding up to a 
maximum force Fmax, then a drop in the force which 
declines further with a characteristic stick slip 
behaviour, as the fibre is pulled out from the matrix 
[16,17]. A basic data treatment has been employed 
in this paper to calculate the apparent IFFS (τapp) 
using the following formula:  

Ld
F

A
F

f
app π

τ maxmax ==  (1) 

where df is the fibre diameter and L is the embedded 
length, as measured from microscopic analysis. The 
data from this test are presented in Table 1.  
 
Table 1.  SFPO Mechanical Data 

Material df 
(μm) 

L 
(μm) 

Fmax 
(N) 

τ (MPa)

Glass/Polyester 12.2 849 0.157 4.8 
 
The principal aim of this investigation was 

not to generate mechanical data, however rather to 
investigate the surface properties of the pulled-out 
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fibre. However, the IFSS has been calculated to be 
4.8 MPa, which is in agreement with previous 
investigations of glass fibre/polyester systems 
[16].
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Fig. 2. A force verses extension plot of a SFPO 
experiment  
4.2 ToF-SIMS results 

The objective of this investigation was to 
generate a pulled-out fibre surface and utilise ToF-
SIMS to determine the locus of failure and provide 
further information to model the failure mechanism, 
and investigate further preliminary observations. 
Figure 3, presents positive mode spectra of the pre-
embedded and pulled-out fibre tip over a 128 μm x 
128 μm region using the high mass resolution 
bunched mode, although as the fibre is some 12 μm 
in diameter, the area of specimen contributing to the 
data set is some 12 x 100 μm2.  

It is evident that the two spectra are 
distinctly different. The characteristic peaks of the 
spectra, chemical assignments, likely chemical 
structures and their origin are presented in Table 2. 
The pulled-out fibre tip, as expected, has high 
intensity peaks at 91u, 105u, 115u and 149u 
characteristic of the polyester resin. The pre-
embedded fibre has a very intense peak at 135u 
associated with the epoxy pre-polymer of the size. 
There are also intense peaks at 58u and 73u 
characteristic of poly(dimethyl siloxane) (PDMS), a 
highly mobile surface contaminant which could 
originate from the manufacturing or storage 
environments. The presence of this contaminate can 

assist in the understanding of the failure surfaces. 
The intensity of the PDMS characteristic peaks on 
the pulled-out fibre spectrum are very low, the 
negative spectra, not presented here, also show this. 
This information, coupled with the appearance of 
peaks at 28u, 39u and 40u which are characteristic 
of the underlying glass provide some insight into a 
failure model. This suggests that the debond has 
penetrated through the interphase, stripping away the 
top layer of size on the fibre surface, to reveal the 
underlying glass. 
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Fig.  3. Positive ToF-SIMS spectra of the pre-
embedded and pulled-out fibre tip  

 

Fig.  4. Positive ToF-SIMS spectra of the pulled-out 
fibre tip and resin meniscus 

 
Figure 4 compares positive spectra of the 

pulled out fibre tip and the conical resin fragment 
region, an artefact of the SFPO failure located at the 
fibre entry point to the resin. These spectra were 
generated from retrospective analysis of ToF-SIMS 
images which used the higher spatial resolution burst 
alignment mode. A raster area of 128 μm x 128 μm 
was used for the tip region and a larger 256 μm x 
256 μm area for the resin cone, using resolutions of 
256 x 256 and 512 x 512 pixels respectively. 

As expected, the spectrum of the resin cone 
region has higher intensity of polyester characteristic 
peaks and low intensity of the characteristic glass 
peaks. Therefore there is surface coverage of 
polyester resin in this region unlike the pulled-out 
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fibre tip region, suggesting that the debond runs 
deeper through the fibre/matrix interface at the tip 
region. As mentioned earlier this observation is not 
totally unfounded given that the stress transfer 
models predict that there is a higher stress state 
located around the fibre tip region [10,16,17,19]. 
The evidence presented here, and that from previous 
ToF-SIMS investigations of pulled-out fibres 
[8,9,13], suggests that this higher stress state has 
caused the debond to penetrate deeper through the 
interphase at the tip region therefore revealing the 
underlying glass. 
 
Table 2. Characteristic peaks and chemical 
structures [12,20-22] 

Mass 
(u) Formula Characteristic Structure 

135 [C9H11O]+ Glass fibre size 
(epoxy) OH C

+
CH3

CH3  

91 [C7H7]+ Polyester resin 
 

105 [C7H5O]+ Polyester resin O
+

 

115 [C9H7]+ Polyester resin 
 

149 [C8H5O3]+ Polyester resin 
 

58 [SiC2H6]+ PDMS CH3 Si C 3H  

73 [SiC H ]3 9
+ PDMS CH3 Si CH3

CH3

 
 

This clear chemical difference at the fibre 
tip regi

5 Application of Methodology 

n to be useful from 
a pr

e base polyester 
resin

ghening effect has been 
studied previously. Fracture surfaces generated from 

cond

l 

with 

on is in accord with stress transfer model 
predictions. 

  

This methodology has show
oof of concept standpoint, characterising the 

base polyester resin matrix system, and will be 
particularly instructive when utilised to assess the 
interface chemistry and IFSS of a nano-particle 
modified polyester matrix system. 

The nano-modification of th
 with phenyl ormosils has been demonstrated to 

provide a fourfold toughening effect [23]. This is the 
rationale for considering its application as a matrix 
material of an FRC with the aim to produce an 
overall tougher composite. 

The origin of this tou

ucting double edge notch (DEN) tests on the 
base polyester resin and phenyl nano-modified resin 
system specimens have been examined using SEM 
and presented in Figure 5, [23].  

 a) 

 
Fig. 5.  SEM micrographs of the DEN fracture 
surfaces of: a) unmodified polyester resin, b) phen

+

O

y
ormosil modified polyester resin, x500 
magnification, after Jesson et al [23] 

 
The base polyester fracture surface, Fig. 5a) 

shows a typical smooth fracture surface, consistent 
a brittle failure. In comparison, Fig. 5b), the 

phenyl ormosil modified resin presents a rougher 
surface with more crater-like surface features 
indicative of increased plastic deformation, 
consistent with a tougher material failure 
mechanism. Some of this plastic deformation would 
be accounted for in the debonding of the particle 
from the matrix, where it is likely that the 
surrounding matrix becomes deformed. 

It has been demonstrated that assessment of the 
force displacement curve from SFPO tests can 
enable the comparison of composite toughness 
values. Tougher composites display a larger area in 
the pull-out portion of the curve, as shown in Figure 

b) 

O
+ 

H

O
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6, attributed to an increase in the interfacial 
coefficient of friction, μ, which is dependent upon 
the physical properties of the matrix and fibre and 
the interphase between them [17].  

 

 
Fig. f an 
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 “Review of test methods and testing for 
of fibre-matrix adhesion”. Proceedings of 

[2] 
bre pull-out 

[3] 
tion and micromechanical 

 6. Schematic diagram showing the effect o
ed μ on the shape of the SFPO test force-

displacement curve, after Yue et al [17] 
 
How the fracture mechanism of

porated is not yet known, and is the basis of 
current investigations. In parallel, surface analysis 
techniques will provide insight into the chemistry of 
the interphase between the ormosil nano-modified 
resin system and the glass fibre. 
 
6 Further Work 

An automate
testing within th

onment of the ToF-SIMS system preparation 
chamber has been developed. A schematic diagram 
is shown in Figure 7.  

 

This will remove the risk of contamination, 
principally fr

osphere of failure, and fracture debris from 
previously tested specimens, and provide higher 
secondary ion yields for enhanced spectra 
interpretation [24-26]. The automated stage will 
permit quantifiable mechanical data to be collected 
while also generating contaminant free failure 
surfaces. 
 
7 Conclus

 
Fig. 7. Schematic diagram of the in-situ fracture 
stage design 

This inves
studies utilising

pliment the mechanical data obtained from 
SFPO tests of base polyester resin and glass fibres. 

A systematic cradle-to-grave analysis 
methodology has been employed in order to

sically investigate SFPO specimens. This 
approach confirmed that the change in surface 
chemistry at the fibre tip region was a result of the 
pull-out. Stress transfer mechanics models predict a 
change in stress state at the tip region. With this 
knowledge, a more informed failure mechanism(s) 
was proposed [13]. 

The methodology will be applied to investigate 
nano-modified poly

acterisation of the mechanical properties and 
inform on the chemistry of the interphase, with a 
view to understand how the toughness of FMC 
materials can be improved. 
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