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Abstract  

This work presents a theoretical model of 
cylindrical assemblies joined with adhesive, based 
on an energy method. After the determination of the 
cinematically acceptable field of stresses, according 
to the applied load, a variational calculus on the 
expression of elastic potential energy leads to the 
complete expression of the stress field in the whole 
assembly. A first parametric analysis (geometrical 
and physical parameters) is carried out on an 
assembly of tubes and makes it possible to determine 
the stress variations and deduce the optimal length 
and the thickness of the adhesive. The model is 
validated by comparison with a finite elements 
method. For the assembly, the total force-
displacement behaviour is well defined. Thus the 
analytical model makes it possible to determine the 
rigidity of the assembly and to obtain a simple 
formulation very rapidly which gives the total 
behaviour of the assembly. 
 
 
1 Introduction 

The mechanical performance of an adhesive 
bonded joint is related to the distribution of the 
stresses in the adhesive layer. The first studies are 
developed on plane assemblies with simple covering 
submitted to traction. The work of Volkersen [1] 
developed into 1944 leads to a false evaluation of 
the level of maximum constraint because the effects 
of bending of the supports are not taken into 
account. From the first works of Volkersen [1] 
which give only a distribution of the shear stress in 
the adhesive joint to the more recent studies by finite 
elements, many formulations have made it possible 
to define the field of stresses in such assemblies 
better and better. 

Lubkin and Reissner [2] present an analysis of 
stresses in tubular assemblies subjected to an axial 
loading and give a solution of the peeling stress 

distribution in the thickness of the adhesive. The 
tubes being supposed of small thickness, they use 
the theory of thin walls to build the stress field. 
Their analysis assumes that the work of shear and 
peel stresses in the two tubes is negligible relative to 
that of the same stresses in the adhesive. 

Alwar and Nagaraja [3] made a study by finite 
elements of tubular joining subjected to an axial load 
taking into account the viscoelastic behaviour of the 
adhesive. They also show that the viscoelastic 
behaviour of the adhesive makes it possible to 
predict a considerable reduction in the maximum 
stresses at the ends of the joint. 

Shi and Cheng [4] they built a first stress field 
using the equilibrium equations and the conditions 
of continuity of the stresses at the interfaces using an 
equation of compatibility. They then calculate the 
potential energy associated with this field and using 
the theorem of minimal complementary energy, they 
obtain a system of differential equations, the 
solutions of which are used to determine the optimal 
field. 

By minimizing the potential energy associated 
to the stress field using variational methods and 
some simplifying assumptions Nemes, Lachaud and 
Mojtabi [5], [6] has developed new analytical 
models to a fast pre dimensioning of the adhesive 
cylindrical bonded assemblies. 
2 Analytical models 

All work has encountered difficulties in 
modeling the stress field in the vicinity of the ends 
of the joint. The method used to obtain the optimal 
field consists of: Construction of a statically 
acceptable field, Calculation of the potential energy 
associated with the stress field, Minimization of this 
energy by variational method, Resolution of the 
differential equation obtained. 
2.1 Stress field definition 

In this work we consider an assembly of 
bonded tubes. 
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This assembly is subjected to a tensile load 
whose geometrical definitions are given in figure 1.  

 

 
 

Fig.1.  Cylindrical assemblies 
 

The parameters of the assembly are: 
• Eit, Eil - Transversal and longitudinal Young’s 

modulus, 
• νtli - Poisson's ratio, 
• ri - Internal radius of the inner tube, 
• ric - External radius of the inner tube, 
• rec - Internal radius of the external tube, 
• re - External radius of the external tube, 
• L - Joining length, 
• f - Tensile stress along z axis on the inner tube, 
• q - Tensile stress along z axis on the external 

tube. 
The stresses in various materials will be 

located by the index (i), (i = 1 for the inner tube, © 
for the adhesive and 2 for the outer tube). 

To build the statically acceptable field, we will 
adopt the following hypotheses: 
• the symmetry of revolution imposes that the 

shear stresses are null: 

τrθ = τzθ = 0 (1) 

• the normal stress in the adhesive will be 
neglected: 

0( )
zzσ © =  (2) 

• the axial stress will be a function only of 
variable z. 
The stress field is thus reduced to: 

• for the inner tube (1): 
( 1 )
zz ( z )σ , ( 1 )

rz ( r ,z )τ , ( 1 )( r ,z )θθσ , ( 1 )
rr ( r )σ  (3) 

• for the inner tube (©): 

( )( z )θθσ © , ( )
rz ( r ,z )τ © , ( )

rr cst.σ © =  (4) 

• for the inner tube (2): 
( 2 )
zz ( z )σ , ( 2 )

rz ( r ,z )τ , ( 2 )( r ,z )θθσ , ( 2 )
rr ( r )σ  (5) 

We take an elementary volume of adhesive 
bonded joint of length dz. 

We express all the stress fields’ 
components function of the normal stress in the 
inner tube ( (1)

zzσ ) like follow: 

( )2 2 ( 1 )
i( 1 ) zz

rz

r r d( r,z )
2r dz

στ
−

=  (6) 

( )
2 2 2 ( 1 )

( 1 ) i zz
1 i2

r r dr ,z [ 2r r ]
2 dzθθ

σσ α
−

= + −  (7) 

( )
zz 0σ © =  (8) 

( )2 2 ( 1 )
i ic( c ) zz

rz

r r d( r ,z )
2r dz

στ
−

=  (9) 

( )
2 2 2 ( 1 )

( c ) i ic zz
1 ic i2

r r dz [ r r ]
2 dzθθ

σσ α
−

= + −  (10) 

( ) ( )
2 2

( 2 ) ( 1 )ic i
zz zz2 2

e ec

r rr ,z f
r r

σ σ
⎛ ⎞−

= −⎜ ⎟⎜ ⎟−⎝ ⎠
 (11) 

( )( )2 2 2 2 ( 1 )
e ic i( 2 ) zz

rz 2 2
ec e

r r r r d( r ,z )
dz2r( r r )
στ

− −
=

−
 (12) 

( )

2

2 2 2 2 2 (1)
( 2 ) e ic i zz

2 2 2
ec e

ic i
1 e

ec e

( r r )( r r ) dr,z
2( r r ) dz

r r [2r r ]
r r

θθ

α

σσ

α

− −
= +

−
−

+ −
−

 (13) 

2.2 Deformation energy calculation 

We have express the deformation energy 
like follow: 
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ec
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zz
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( 1 ) ( 1 )tl1 rz
zz

1t 1

rL ( c )2
( c )2c
rz
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zz

2 t 2l0 r
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zz
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E E

2     rdrdz
E G
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E E

2            
E
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θ
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( 2 )2
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2
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(14) 

We can simplify the energy’s expression 
function (1)

zzσ : 

2L 2 ( 1) ( 1)
( 1 )2 ( 1 ) zz zz

P zz zz 2
0

22 ( 1) 2 ( 1)
( 1) zz zz
zz 2 2

d dA B C
dzdz

d dD E F K dz
dz dz

σ σξ π σ σ

σ σσ

⎡ ⎛ ⎞
⎢= + + +⎜ ⎟
⎢ ⎝ ⎠⎣

⎤⎛ ⎞
⎥+ + + +⎜ ⎟
⎥⎝ ⎠ ⎦

∫
(15) 

Where: 

1D D kα= + ,  

1F F hα= + , 
2
1K K mα= +  

(16) 

The A, B, C, D, E, F, K constants and k, h, 
m depend on the load and on the dimensional 
and mechanical specifications of the two tubes 
and adhesive [5] 
2.3 Parametric study 

After the model expression we have made 
some parametric studies concerning the influence of 
the adhesive overlap length, the assembly rigidity, 
the relative rigidity, adhesive thickness. 

We observe: 
• By increasing the overlap length gradually 

we have the reduction of shear stress in the 
medium of the joint and the displacement of 
the peaks of stresses towards the free edges, 

• The maximum peaks increase slightly when 
the elastic modulus increases, 

• the maximum peaks on the two edges are no 
longer equal if the ratio E2/E1 is different 
from 1, 

• As the thickness of adhesive increases, the 
values of the stresses decrease at the free 
edges. 
 

 

 

 
 
Fig. 2.  Shear stress (τrz) distribution according with 

the covering length. 
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Fig. 3.  Shear stress (τrz) variation according to 

Young’s modulus of the adhesive. 
 

 
 

Fig.4.  Shear stress (τrz) variation according to 
relative rigidity. 

 

 
 

Fig.5.  Shear stress (τrz) variation according to 
adhesive thickness. 

 
 
 

3 Numerical analysis 
The objective of this study is to compare our 

analytical models of the adhesive-bonded joints with 
models made of finite elements. 

 
Fig. 6. CAD diagram of a cylindrical adhesive 

bonded joint. 
 

The C.A.D. diagram, basis of the finite element 
model, is presented in figure 2. The diagram also 
describes the boundary conditions and the loading 
applied. The cylindrical assembly is modelled by 2D 
quadrangles of degree 2 finite elements with the axis 
symmetric assumption (x → z, y → r, z → θ). The 
displacements along x and y in face  of the 
external tube and those along y in face  of the 
internal tube are blocked. The load is applied as a 
pressure on face  (Figure 6). 

Figure 7 shows an example of the grid used in 
this study where all the finite elements are 
quadrangles. We imposed ten finite elements 
according to the adhesive. 
 

 
 

Fig. 7.  Numerical modelling of a cylindrical bonded 
joint with quadrangles elements. 

 
Figure 8 shows the stress distributions in the 

assembly in the form of cartography. 
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a) 

 
b) 

 
Fig.8.  Stress distribution: a) orthoradial stress 

( θθσ ); b) shear stress ( xyτ ). 

3.1 Load transfer 

To compare the analytical model with the finite 
elements model we determine the load transfer in the 
middle of the bonded substrates, figure 9, in a 
cylindrical metal-composite assembly. 

We can note some differences in the variation 
of the load given by the ideal model in the case of a 
metal-composite assembly, (Figure 9), while it still 
has a similar evolution. 

The point of equivalence in stress in the two 
substrates is shifted (according to the length of the 
join) from approximately 15% in the finite element 
analysis. It should be noted that the position of this 
point varies according to the characteristics of the 
substrates: it is centered compared to the length of 
the join for substrates of equivalent total rigidities, 
and shifts on both sides as a function of the ratio of 
the rigidities of the bonded substrates.  

The ideal analytical model has the same aspect 
as the finite element model (FEM). 

 

 
 
Fig. 9.  Load transfer in an AU 2024 T3 - AV 119 - 

VE ±45° assembly. 
3.2 Stress analysis in the adhesive  

The stresses in the adhesive make it possible to 
predict the failure of the adhesive-bonded joint. 
Their distribution is thus of primary importance on 
the prediction of this force. 

Figure 10 and 11 presents the distribution of 
the orthoradial and shear stresses, according to the 
covering length. In this case, the stresses given by 
the ideal model are similar to those given by finite 
elements. The greatest differences (30%) are seen on 
the maximum amplitudes where the ideal model 
underestimates these values: the edge effect due to a 
local inflection of the substrates is not taken into 
account. 

 
 

Fig. 10.  Stress distributions in the adhesive layer of 
a cylindrical assembly AU 2024 T3 - AV 119 - 

VE±45°: The orthoradial stress ( θθσ ). 
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Fig. 11.  Stress distributions in the adhesive 
layer of a cylindrical assembly AU 2024 T3 - 
AV 119 - VE ±45°: b) The shear stress ( rzτ ). 

 
4 Conclusions 

The objective of our study was to entirely 
develop analytical models for dimensioning 
adhesive-bonded joints. To this end we placed 
ourselves in the case of a cylindrical assembly. 

The basis of our analytical model was the 
analysis of the stresses applied to an elementary 
volume of the assembly under consideration, 
observing the boundary conditions, the geometry 
and materials of the assembly. The application of an 
energy method made it possible to obtain the 
solution of the problem in stress in any point of the 
structure. The behaviour law enabled us to obtain the 
deformations then, by integration, the displacements.  

The problem in stress, deformation and 
displacements was thus entirely defined. 

The model validation is presented by 
comparison with finite elements models. For the 
assembly, the total force-displacement behaviour is 
well defined. Thus the analytical model makes it 
possible to determine the rigidity of the assembly 
and to obtain a simple formulation very quickly, 
which gives the total behaviour of the assembly. The 
analytical model underestimated the stresses in the 
adhesive leading to an over-estimate of the rupture 
forces. However, this model is reliable and allows 
fast analysis of this type of assembly. 
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