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Abstract
A thermo-mechanical analytical model and

a corresponding macroscopic bonded joint finite
element are presented for the analysis of or-
thotropic double lap joints subjected to combined
thermal-mechanical loads. The analytical solu-
tion offers an improvement in accuracy over its
predecessor[1, 2], at the cost of increased solu-
tion complexity. However, to facilitate the use
of this solution, it has been incorporated into a
macroscopic bonded joint finite element[3]. The
single element reproduces the analytical solution
with minimal analyst input, and therefore can be
easily incorporated into early design studies. The
macroscopic element provides a computationally
efficient and mesh independent comparative stress
result. To validate the element, the stress predic-
tions of the single element are compared with a
continuum finite element model. The current ar-
ticle is a summary of recent work[4].

1 Introduction

Advances in structural epoxies and adhesives have
expanded the temperature range over which high
performance fibrous composite materials can be
used. In the structures composed of these ma-
terials, adhesively bonded joints are widely used
due to improved load distribution, increased ser-
vice life, reduced machining cost, and/or reduced
complexity[5]. These epoxies and adhesives, de-
signed to provide structural integrity at high tem-
perature, are subjected to severe operating en-
vironments. Furthermore, manufacturing pro-
cesses subject these materials to broad tempera-
ture ranges during the different stages of the cur-
ing cycle. It is known that high stress gradients
can exist near the edges of bonded joints due to

mismatches in thermal expansion coefficients and
elastic moduli[6]. Therefore, components made
from these materials carry a significant risk of ad-
verse stress caused by differential thermal expan-
sion, even when used at room temperature. Due
to the increased use of composite materials and
bonded joints, the need for efficient and effective
thermo-mechanical analysis tools is greater than
ever.

The design and modeling of bonded joints
is not yet a mature field. Continuum fi-
nite element (FE) models of adhesively bonded
joints are widely available in the literature,
where work began as early as 1971 (Wooley
and Garver[7], and Adams and Peppiatt[8] are
early references). More recently, promising ad-
vances in cohesive zone (including Kafkalidis and
Thouless[9], Xie et al.[10], Li et al.[11, 12], Val-
oroso and Champaney[13]), discrete cohesive zone
(Xie et al.[14]), fracture mechanics (Weerts and
Kossira[15]), probabilistic prediction (Aydemir
and Gunay[16], Koutsourelakis et al.[17]), virtual
crack closure (including Gillespie et al.[18], Wang
et al.[19], Glaessgen et al.[20], Krueger [21], Xie et
al.[22, 23, 24]), and other adhesive region models
(including Munoz et al.[25], Goncalves et al.[26],
Goyal et al.[27]) have greatly increased the predic-
tive capability of FE techniques. Cohesive zone
models have been incorporated into commercial
software, including Abaqus R©[28], as well as freely
available research codes like Tahoe R©[29]. How-
ever, despite their availability, the listed tech-
niques are expensive and require user expertise.
Therefore there are ongoing efforts to develop
rapid analysis techniques (Oterkus et al.[30, 31],
Smeltzer and Lundgren[32]), a key enabling tech-
nology for vehicle designers.

Though models built with the tools listed
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above can be accurate and very capable, they rely
on the presence of a meshed joint, where contin-
uum elements represent the adherends, and the
adhesive is represented by continuum elements or
a discrete traction separation law. There is sig-
nificant overhead in creating and analyzing joints
using these and other continuum numerical meth-
ods. Mesh generation and manipulation is an
obstacle for all but academic geometries. Mesh
density is also a consideration, since the com-
putational time for basic joints can be signifi-
cant if non-linear material properties and mate-
rial degradation criterion are included. As a re-
sult, there are ongoing efforts to evaluate analysis
techniques that are less mesh dependent. For ex-
ample, the Composites Affordability Initiative has
recommended a p-based analysis code for analy-
sis of adhesively bonded joints.1 Use of p-based
codes should be less mesh dependent than the
more commonly used h-based FE codes. Simi-
larly, Bednarcyk et al.[33] used a higher order,
semi-analytical theory (developed for functionally
graded materials) to analyze a double lap and
a bonded doubler joint. This technique was re-
ported to be less mesh dependent than h-based
analysis methodologies.

Although the techniques cited above attempt
to minimize mesh dependency, they do not elim-
inate it. Due to mesh generation overhead and
computational cost, it is often impractical and
sometimes impossible to include joint models in
sub-system, system, or vehicle level models. In
these instances, an appropriate single finite ele-
ment representation of a joint could provide ad-
equate representation of a joint’s behavior in the
structure being modeled. Such a joint element
was suggested in Gustafson and Waas[3], and
referred to as a Macroscopic Bonded Joint Fi-
nite Element (MBJFE). In concept, it was shown
to provide basic joint performance analysis us-
ing a very limited number of degrees of freedom.
The element’s shape functions had a thermo-
mechanical, orthotropic, lap-shear type analytical
solution embedded within them. The internal dis-
placement (strain) field of the element provided
an adequate approximation of the field in a joint.
Therefore, it predicted the stress response with-
out significant meshing overhead. The MBJFE
was intended to lay a foundation for advances in
application specific joint elements for initial sizing

in FE models at all system levels.
This article is an abbreviated presentation of

the work described in Gustafson and Waas[4]. It
is intended to disseminate that work for addi-
tional scrutiny.

2 Derivation of the advanced shear and
peel model

In Gustafson et al.[2], a dimensionless solution
was presented for a symmetric, orthotropic double
lap joint subjected to thermo-mechanical loading.
The lap joint is schematically represented in fig-
ure 1.1. The central adherend is referred to as ma-
terial a, the outer adherend is referred to as ma-
terial c. Material b is the adhesive, which is thin
in comparison to the adherends. The objective
is to determine the equilibrium stress response to
thermal and mechanical loading. The material is
assumed to be linear elastic and orthotropic, with
linear orthotropic thermal expansion. The joint is
assumed to deform in plane strain.

Examining a general parallelepiped as shown
in figure 1.2, force equilibrium in x and y direc-
tions can be written as:∑

F1 = δy (σ11(x + δx, y)− σ11(x, y))

+ δx (τ12(x, y + δy)− τ12(x, y))
= 0∑

F2 = δx (σ22(x, y + δy)− σ22(x, y))

+ δy (τ12(x + δx, y)− τ12(x, y))
= 0,

(1)

which can be rewritten as the shear-normal stress
relationship for each constituent:

∂σ11(x, y)
∂x

= −∂τ12(x, y)
∂y

∂σ22(x, y)
∂y

= −∂τ12(x, y)
∂x

.

(2)

Several additional assumptions are made to
ease the solution. The longitudinal normal stress
in the adhesive is assumed to be zero, therefore
Eqs. 2 dictates that the shear stress in the adhe-
sive is a function of x only.2 For convenience, the
remaining shear stress fields are assumed to vary
linearly in y throughout the specimen, therefore
Eqs. 2 dictate that the adherend longitudinal nor-
mal stresses are also functions of x only, and that
the peel stresses are linear functions of x and y.

1http://www.esrd.com [cited Feb. 2007]
2The limitations imposed by this assumption are described in Gustafson et al.[2].
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1.1: Schematic of the double lap joint with end posts 1.2: Generalized equilibrium parallelepiped

Traction free boundaries are present on the
top and bottom surfaces. The centerline of the
central adherend is free of shear due to symme-
try. These requirements are expressed as:

τc12(x,tb+tc) = 0,

σc22(x,tb+tc) = 0,

τa12(x,− ta
2

) = 0.

(3)

Stress continuity at the joint interfaces requires
the following:

σb22(x,0) = σa22(x,0),

σc22(x,tb) = σb22(x,tb),

τb12(x,0) = τa12(x,0),

τc12(x,tb) = τb12(x,tb).

(4)

Finally, longitudinal normal stress boundary con-
ditions are imposed by the mechanical loads at the
edges of central adherend a, and are expressed as:

σa11(0) = 0,

σa11(l) =
2P

ta
,

(5)

By sequentially writing a linear form for each
stress component (using the stress field charac-
ter described above), and by applying boundary
and continuity conditions to determine the linear
constants, equations can be written for each stress
component in terms of the central adherend stress
σa11 (x). The process is as described in Ref. [2]
and is the same in this work, with the addition of
several stress components (τa12 (x, y), σa22 (x, y),
τc12 (x, y), σc22 (x, y)). The resulting stress equa-
tions are detailed on the left side of table 1.

In addition to the boundary conditions spec-
ified in Eqs. 3, Eqs. 4, and Eqs. 5, the adhesive

edge shear stress is forced to zero using the end
post technique described in Gustafson et al.[2],
which was inspired by the double lap joint solu-
tion of Davies[34]. The stresses in the edge posts
also listed on the left side of table 1.

The solution for the central adherend normal
stress (σa11 (x)) is carried out by application of
the principle of virtual forces, as described in de-
tail in [4]. In summary, for each stress component
(each is a function of σa11 (x)), a corresponding
virtual stress component is written in terms of
the virtual normal stress σ̂a11 (x). These virtual
stress components are shown on the right side of
table 1. By integrating potential energy over the
volume of the joint and minimizing for any ad-
missible σ̂a11 (x), the central adherend stress field
σa11 (x) is determined as a function of all mate-
rial properties and loads. Subsequent grouping
of all material terms according to their order of
derivative (defined as β and γ in Eq. 6) and the
loads according to thermal and mechanical con-
tributions of the total load (defined as φT and φP

respectively in Eq. 6), the differential equation
can be written as:

∂4σa11 (x)
∂x4

+β
∂2σa11 (x)

∂x2
+γσa11 (x)+φT +φP = 0.

(6)
Eq. 6 is identical in form to the solution given in
[2], however the material constants β and γ, as
well as the load constants φT and φP are more
complex due to the increase in the retained stress
components in the potential energy minimization.
The improved accuracy of this model over its pre-
decessor is a direct result of the addition of these
previously neglected terms.

With an equation for the central adherend
stress (σa11 (x)), all stress components can easily
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Table 1: Double lap joint stresses and virtual stresses expressed as functions of σa11 (x)

Equilibrium Normal Stress Virtual Normal Stress
σa11 (x) σ̂a11 (x)

σc11 (x) = P
tc
− ta σa11(x)

2 tc
σ̂c11 (x, y) = − ta σ̂a11(x)

2 tc

σa22 (x, y) = d2

dx2 σa11 (x)
(

y2+tay
2 − ta(tc+2tb)

4

)
σ̂a22 (x, y) = d2

dx2 σ̂a11 (x)
(

y2+tay
2 − ta(tc+2tb)

4

)
σb22 (x, y) =

ta
“

d2

dx2 σa11(x)
”
(2y−tc−2tb)

4 σ̂b22 (x, y) =
ta

“
d2

dx2 σ̂a11(x)
”
(2y−tc−2tb)

4

σc22 (x, y) = −
ta

“
d2

dx2 σa11(x)
”
(y−tc−tb)

2

4tc
σ̂c22 (x, y) = −

ta
“

d2

dx2 σ̂a11(x)
”
(y−tc−tb)

2

4tc

Equilibrium Shear Stress Virtual Shear Stress

τa12 (x, y) = −
d

dx
σa11(x)(2y+ta)

2 τ̂a12 (x, y) = −
d

dx
σ̂a11(x)(2y+ta)

2

τb12 (x) = − ta( d
dx

σa11(x))
2 τ̂b12 (x, y) = − ta( d

dx
σ̂a11(x))
2

τc12 (x, y) =
ta( d

dx
σa11(x))(y−tc−tb)

2tc
τ̂c12 (x, y) =

ta( d
dx

σ̂a11(x))(y−tc−tb)

2tc

Equilibrium End Post Stress Virtual End Post Stress

σp22 (x̄ = 0, y) =
ta ( d

d x
σa11(x)) (y−tb)

2 tp
σ̂p22 (x̄ = 0, y) =

ta ( d
d x

σ̂a11(x)) (y−tb)

2 tp

σp22 (x̄ = 1, y) = − ta ( d
d x

σa11(x)) (y−tb)

2 tp
σ̂p22 (x̄ = 1, y) = − ta ( d

d x
σ̂a11(x)) (y−tb)

2 tp

be determined using the equations in table 1. It
was noted in Ref. [2] that non-dimensionalization
and load normalization of (6) is possible, and do-
ing so provides a mechanism for separation of the
responses to mechanical and thermal loads. As
described in Ref. [3], this has great benefits for
the MBJFE solution when used with an itera-
tive solver. Therefore, without explicitly report-
ing the dimensional material and load constants
(β, γ, φT , φP ), non-dimensionalization and load
normalization is done so as to conform to the so-
lution provided in Ref. [2]. The dimensionless and
load normalized material, load, and stress terms
are defined as follows:

x̄ = x
l , β̄ = l2β,

γ̄ = l4γ, φ̄T = φT
l4

Ea11
,

φ̄P = φP
l4

Ea11
, ¯̄φtotal = φ̄P + φ̄T ,

¯̄φP = φ̄P
¯̄φtotal

, ¯̄σκij(x̄) = σκij(lx̄)

Ea11
¯̄φtotal

.

(7)

In Eq. 7, x̄ is the dimensionless spatial coordi-
nate measured from the left edge of the joint, β̄
and γ̄ are dimensionless material parameters, and
φ̄P and φ̄T are the dimensionless mechanical and
thermal loads respectively. A dimensionless total
load is defined as ¯̄φtotal , which is used to further
normalize the stresses ¯̄σκij(x̄). Similarly, a me-
chanical fraction of the dimensionless total load is
defined as ¯̄φP . Each of the terms in Eq. 7 are ex-
plicitly defined according to the constitutive and
load quantities in [4]. Now, Eq. 8 from Ref. [2] is

written as the form most suitable for the MBJFE:

¯̄σa11

(
x̄, ¯̄φP

)
= + ¯̄A

(
¯̄φP

)
eλ̄1x̄ + ¯̄B

(
¯̄φP

)
e−λ̄1x̄

+ ¯̄C
(

¯̄φP

)
eλ̄3x̄ + ¯̄D

(
¯̄φP

)
e−λ̄3x̄ − 1

γ
.

(8)

In Eq. 8, the material parameters are recast in
the form of the roots of the bi-quadratic differen-
tial equation.

λ̄2
[13] =

−β̄ ±
√

β̄2 − 4γ̄

2
. (9)

The equations for the dimensionless basis coeffi-
cients ( ¯̄A

(
¯̄φP

)
, ¯̄B

(
¯̄φP

)
, ¯̄C

(
¯̄φP

)
, ¯̄D

(
¯̄φP

)
) are

identical to those given in Ref. [2] and are listed
below:

¯̄A
(

¯̄φP

)
=

µ3µAP

µ1µ2

¯̄φP +
µAT

µ1
,

¯̄B
(

¯̄φP

)
=

µ3µBP

µ1µ2

¯̄φP +
µBT

µ1
,

¯̄C
(

¯̄φP

)
=

µ3µCP

µ1µ2

¯̄φP +
µCT

µ1
,

¯̄D
(

¯̄φP

)
=

µ3µDP

µ1µ2

¯̄φP +
µDT

µ1
,

(10)

In Eq. 10, the coefficients ( ¯̄A
(

¯̄φP

)
, ¯̄B

(
¯̄φP

)
,

¯̄C
(

¯̄φP

)
, ¯̄D

(
¯̄φP

)
) are linear functions of the me-

chanical fraction of the total load ( ¯̄φP ) and several
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variables denoted by µ which are combinations of
the material parameters. These are given in the
[4]. In combination, Eq. 8 and Eq. 10 effectively
separate the thermal and mechanical responses.

It is recognized that the presented solution in
this section would be incomplete without addi-
tional information provided in Ref. [2], particu-
larly with respect to the application of boundary
conditions which bridge between the differential
equation (Eq. 6) and the stress solution (Eq. 8).
Further, Ref. [2] provides complete detail regard-
ing the load normalized form of Eq. 8.

3 Formulation of the finite element

Figure 1 schematically shows the MBJFE origi-
nally derived in Gustafson and Waas[3]. The el-
ement is a 1D element, with all displacement de-
grees of freedom being oriented along the 1-axis.
Two of the displacement degrees of freedom, q1

and q4, are external degrees of freedom which con-
nect the joint element to the external structure.
The remaining displacement degrees of freedom
are internal to the element, and are used in con-
junction with Lagrange multipliers to determine
the mechanical loading fraction, ¯̄φP , required for
determination of the stress and strain fields gov-
erned by Eq. 8. The mechanical load that is car-
ried across the joint is calculated using internal
degrees of freedom, P1 and P2 .

The element in figure 1 is composed of three
subelements. The outer subelements span q1 - q2,
and q3 - q4. These subelements are essentially
truss elements, and their principal purpose is to
establish the mechanical load as an internal de-
gree of freedom as described in Ref. [3], where
their contribution to the element stiffness is given
in detail. The joint section subelement spans q2 -
q3, and is responsible for predicting the relevant
joint stresses as well as correctly representing the
stiffness of the joint. The form of the stiffness
matrix was developed in Ref. [3]. To update the
subelement to the more accurate stress functions
developed above, the displacement interpolation
(shape functions) must be updated, as is detailed
in subsection 3.1.

3.1 Stiffness and Load Contribution of the
Adhesively Bonded Section

The subelement stiffness matrix is directly depen-
dent on the load-displacement response of the cen-
tral and outer adherends. The strain in these ad-

herends is related, via the material constitutive
response, to the stress fields known from Eq. 8
and table 1. These strains are related to the stiff-
ness matrix by shape functions derivatives, and
this relationship was given in Ref. [3] as Eq. 11.

Ke =

X
κ

Eκ11

Z yκ1

yκ0

Z 1

0

B2
κ

“
x̄, ¯̄φP

”
dx̄ dyκ

le

»
1 −1

−1 1

–
(11)

In the discrete space of the FE model, the known
or desired quantities are the applied temperature
change (∆T , assumed to be constant through the
element) and the nodal loads and displacements.
The load quantities must be recast into their non-
dimensional forms to conform to the stress equa-
tions given above. Non-dimensionalizing con-
stants ( Θ

θ∆T
and Θ

θP
) are defined so that:

∆T =
Θ

θ∆T
φ̄T ,

P =
Θ
θP

φ̄P .

(12)

Application of Eqs. 12 to the known stress field
and constitutive law, the strain can be written as
a linear function of the total load ¯̄φtotal :

εa11

¯̄φtotal

= (1 − νa13νa31) ·h
+e−λ̄3x̄ ¯̄D

“
¯̄φP

”
+ eλ̄3x̄ ¯̄C

“
¯̄φP

”
+e−λ̄1x̄ ¯̄B

“
¯̄φP

”
+ eλ̄1x̄ ¯̄A

“
¯̄φP

”
− 1

γ̄

–
+

Θ

θ∆T

“
1 − ¯̄φP

”
(αa33νa31 + αa11) ,

εc11

¯̄φtotal

=
Ea11ta (νc13νc31 − 1)

2Ec11tc
·h

+e−λ̄3x̄ ¯̄D
“

¯̄φP

”
+ eλ̄3x̄ ¯̄C

“
¯̄φP

”
+e−λ̄1x̄ ¯̄B

“
¯̄φP

”
+ eλ̄1x̄ ¯̄A

“
¯̄φP

”i
+

Θ

θ∆T

“
1 − ¯̄φP

”
(αc11 + αc33νc31)

+
1

Ec11tc
(1 − νc13νc31)

 
Ea11ta

2γ̄
+

¯̄φP
Θ
θP

1

!
.

(13)

It is assumed that the total elongation is the
same for the adherends, therefore the two elonga-
tion equations are written as:

qe =
(

dx

dx̄

) ∫ 1

0
εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄,

qe =
(

dx

dx̄

) ∫ 1

0
εc11

(
x̄, y, ¯̄φP , ¯̄φtotal

)
dx̄,

(14)

where the subelement elongation qe is defined as:

qe = q4 − q3. (15)
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Figure 1: Symmetric double lap joint and MBJFE representation.

In Eq. 14, the elongation is written as a function
of the non-dimensional total load, ¯̄φtotal . The to-
tal load is not known a priori and must be elimi-
nated in favor of an available quantity (the total
elongation qe) so that a stiffness matrix can be
calculated. This is accomplished by applying the
boundary condition to the result of Eq. 14:(

dx

dx̄

) ∫ x̄

0
εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=0

= 0,(
dx

dx̄

) ∫ x̄

0
εa11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=1

= qe,(
dx

dx̄

) ∫ x̄

0
εc11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=0

= 0,(
dx

dx̄

) ∫ x̄

0
εc11

(
x̄, ¯̄φP , ¯̄φtotal

)
dx̄

∣∣∣∣
x̄=1

= qe,

(16)

Specifically, the elongation is zero when x̄ = 0
(since x̄ = 0 is the reference from which elonga-
tion is measured), and the total elongation is qe

when x̄ = 1. Applying these boundary conditions
and solving for the total load ¯̄φtotal as a function
of elongation qe (this is done for each strain equa-
tion), total load can be replaced in Eq. 13 with
the following:

¯̄φtotala = ¯̄Φaqe,

¯̄φtotal c = ¯̄Φcqe,
(17)

where the constants ( ¯̄Φa , ¯̄Φc) are detailed in [4].
Substituting Eq. 17 into Eq. 13, the displacement
field is known in terms of total elongation and the
shape functions and shape functions derivatives
can now be written for each adherend:

ua

(
x̄, ¯̄φP , qe

)
= Na

(
x̄, ¯̄φP

)
qe,

uc

(
x̄, ¯̄φP , qe

)
= Nc

(
x̄, ¯̄φP

)
qe,

Ba

(
x̄, ¯̄φP

)
=

d

dx̄
Na

(
x̄, ¯̄φP

)
,

Bc

(
x̄, ¯̄φP

)
=

d

dx̄
Nc

(
x̄, ¯̄φP

)
.

(18)

The complete shape functions in Eq. 18 are given
in detail in [4].

Having established the appropriate shape
functions, the stiffness matrix can now be inte-
grated numerically using Eqs. 11. Additionally,
the subelement load vector was derived in Ref. [3]
as Eq. 19, and can now be calculated. In Eqs. 11
and Eq. 19, the summation includes both ad-
herends (κ = a, c).

~F =

"
P +

X
κ

ακ11∆TEκ11

Z y1

y0

Z 1

0

Bκ dx̄ dyκ

#
−1

1

ff
(19)

The final requirement for element calculations
is knowledge of the mechanical load P , used to de-
termine the load character ¯̄φP of the bonded sec-
tion sub-element. This is accomplished by causing
this load to be an internal degree of freedom us-
ing Lagrange multipliers. In this work, the load
becomes P1. The complete description of this pro-
cess is as presented in Ref. [1] and is not repeated
here.

3.2 The Abaqus R© Subroutine

The sub-element stiffness matrices and load vec-
tors, developed above and in Ref. [3], are assem-
bled into element matrices with 6 DOFs using a
standard assembly technique[35]. The formula-
tion requires an iterative solution, since the me-
chanical load carried by the joint is not known
in general. Therefore, the shape functions devel-
oped above have been implemented as a user el-
ement subroutine (UEL) for the commercial non-
linear FE package Abaqus R©[28]. A complete de-
scription of the UEL functionality is provided in
Ref. [3], including the modified midpoint rule nu-
merical integration technique.

The field quantities are calculated from table 1
at each integration point, based on the calculated
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Table 2: Model size for ASTM double lap joints

Model Nodes Elements DOFs
CPE4 ∼ 22100 ∼ 21600 ∼ 44300
UEL 4 1 6

∆T and P1 for the increment. The user specifies
the number of integration points to be the num-
ber of stress prediction points desired in the joint.
In this way, all stress and strain quantities of in-
terest are calculated in a manner consistent with
the shape function displacement field.

4 FE output

The stress prediction provided by the UEL has
been compared to a plane strain continuum FE
model. In the case of the UEL, the entire model
consists of a single element. In the case of the
continuum model, a 2D mesh has been gener-
ated. Both models are based on the ASTM In-
ternational double lap joint[36]. An overview of
the continuum mesh, as well as the assumed ge-
ometry, material properties, and loading are re-
ported in [4]. The solver used is Abaqus R© Stan-
dard, and the continuum mesh consists entirely of
linear plain strain elements (CPE4). Half of the
joint is modeled due to symmetry. The mechani-
cal load is applied far away from the lap joint and
the thermal load is applied to all nodes. Displace-
ment symmetry constraints are enforced along the
mid-plane of the central adherend. Non-linear ge-
ometric stiffness is assumed.

Aluminum (Al) is used as the central adherend
in all models; the outer adherends are Titanium
(Ti), and AS4/3501-6 (AS4)[37]. For simplic-
ity, the adhesive properties are assumed to be
isotropic, and are estimated base on Cytec FM300
adhesive. The shear stresses from the continuum
model are reported at the centerline of the ad-
hesive, which is the most representative location
for comparison with the uniform shear stress pre-
dicted by the UEL. The peel stress in the contin-
uum model is reported at the interface between
the adhesive and the central adherend. The choice
of this location has a large effect on the predicted
peel stress as was reported in [4]. However, the
adhesive to central adherend interface (a-b) com-
parison location is chosen because the UEL model
can be used as a measure of the magnitude of

the singularity present at this location. The peel
stress reported from the UEL is the average peel
stress through the thickness (the stress equation
is evaluated at y = tb

2 ).

4.1 Comparison of MBJFE and contin-
uum based FE models

Plots of the stresses predicted by the continuum
and UEL models are shown in figures 2 and 3. In
each, the shear stress is shown in subfigures a,c,
and e for thermal, mechanical, and mixed loading
respectively. Similarly, the peal stress is shown in
subfigures b,d, and f for thermal, mechanical, and
mixed loading respectively.

In all cases of the Al-Ti joint, the peak shear
stress predicted by the UEL matches the contin-
uum model adequately (figures 2.1, 2.3 and 2.5).
The peak location is consistently found to be fur-
ther from the edge in the UEL than in the con-
tinuum model, owing to the form of the derived
governing differential equation. The peel stress
predicted by the UEL is in adequate agreement
with the continuum model (figures 2.2, 2.4 and
2.6). Unlike the continuum model, the UEL pre-
dicted value does not suffer from any mesh de-
pendency and is therefore well suited for use in
joint-to-joint comparison. The stress predicted by
the UEL is similar to the continuum model, and
is representative of the unconverged singular peel
stress result.

The UEL solution is orthotropic, and an ex-
ample of a composite application is shown in fig-
ures 3. These figures show an Al-AS4 joint sub-
jected to thermal, mechanical, and mixed loading,
where the fibers are oriented longitudinally (0o).
The two figures shows that the UEL solution is
in adequate agreement with the continuum solu-
tion for all three load types, demonstrating the
effectiveness of the UEL in composite joints.

Based on the cumulative agreement shown in
figures 2 and 3 as well as similar plots presented
in [4], it can be concluded that the UEL element
adequately predicts the shear stress in a double
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lap joint. The peel stress predicted by the UEL
model is found to be consistently in agreement
with the magnitude of the (unconverged) singular
stress field in all figures (at the mesh density used
in this comparison). Therefore, it can be used as
a mesh independent indicator of peel stress mag-
nitude, useful for joint-to-joint comparison.

5 Conclusion

In this article, a Macroscopic Bonded Joint Finite
Element has been described. It is capable of pre-
dicting the lap joint field quantities in the bonded
zone while using only six degrees of freedom. It
does so without burdening the user with mesh
dependency or significant meshing overhead. The
described MBJFE accomplishes this task by em-
bedding an analytical solution directly within the
element. Its stiffness and load response are based
on non-linear shape functions that are dependent
on the load character. All critical terms are for-
mulated as functions of the dimensionless me-
chanical load fraction, ¯̄φP , allowing for solution
via an iterative, non-linear FE solver. To demon-
strate its capability, the element has been imple-
mented as a user element subroutine in the com-
mercial finite element package Abaqus R©.

Based on comparison with a traditional FE
solution, the MBJFE has been shown to be capa-
ble of adequately predicting stress and strain due
to thermal and mechanical loads in a single, four
noded element with six degrees of freedom. With
this element, initial sizing and trade studies can
be accomplished with a greatly reduced meshing
investment, as well as a reduction in computation
time, when compared with the standard finite el-
ement method. This work lays a firm foundation
for further advancements in macroscopic joint el-
ements. It is anticipated that currently available
analytical solutions can be reformulated as appli-
cation specific macroscopic joint elements.
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Figure 2: Continuum and UEL models of Al-Ti joint
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Figure 3: Continuum and UEL models of Al-AS4 (0◦) joint
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