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Abstract  

Torsion bars made from carbon fiber 
reinforced plastics (CFRP) can be shown, by 
simplified preliminary stress analysis, to outperform 
those made from steel. A remaining problem is to 
introduce the torsion moment into the fiber-wound 
bar. This work investigates the load introduction 
problem connected with, and to be solved by, a 
proposed design and manufacturing principle. 
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1 Potential of CFRP Torsion Bars 

Torsion bars as automotive suspension spring 
elements have been made quite popular by the mass-
production car VW ‘Beetle’ and, far into the 80ties, 
the sports car Porsche 911. Today the principle is 
less often found in passenger cars than track vehicles 
such as tanks. 

The performance of springs depends on 
stiffness and strength properties. The high limit 
strains and low weight of fiber reinforced plastics 
(FRP) appear attractive. Consequently, leaf springs 
are used in trucks and also in the well-known sports 
car Chevrolet Corvette.  

This work investigates the potential of fiber-
reinforced plastics for torsion bars. Section 2 
presents initial sizing considerations. Section 3 
discusses the problem of introducing the torque into 
the bar and suggests a possible design principle for 
solving it. From the design principle we derive the 
design and analysis models explained in Section 4. 
Section 5 details the automated optimization 
procedure for sizing and Section 6 presents and 
discusses the obtained results. The conclusions are 
found in Section 7.  

 
 

2 Initial Sizing Considerations 

The following sub-sections recall sizing 
formulae for torsion bars made from isotropic 
materials. The analysis of a thick-walled tube 
illuminates the potential and limits of fiber-
reinforced plastics. 
2.1 Sizing Formulae for Metals Recall 

For the sizing of torsion bars with circular cross-
section one finds in engineering handbooks [1] the 
formulae for admissible torque T 

admdT τπ 3

16
=    (1) 

where d and admτ  denote the diameter and the 
admissible shear stress, respectively. The tors-
ion stiffness c  is calculated by 
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l
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with length l  and shear modulus G . The stiff-
ness c  relates torque T  and angle ϕ  over the 
length l : 

c
T

=ϕ     (3) 

It is often desired that torsion springs can with-
stand a specified torque and allow for high rot-
ation at the same time. Thus, the length-specific 
internal energy, 
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is a measure of spring efficiency.  
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2.2 Composite Torsion Bar Potential 

A preliminary investigation compares the 
potential of carbon-fiber reinforced plastics (CFRP) 
with that of spring steel. It considers a torsion spring 
model where Fig. 1 illustrates that a composite body 
is wound around a steel mandrel. It is modeled as a 
sequence of cylindrical shells with a [±45n]s stacking 
sequence.  

 
Fig. 1.  Composite Spring Wound on Steel Mandrel 

 
The shells, or layers, consist of high-perform-

ance CFRP material and we use the properties given 
in Table 1.  
 

Table 1.  Material Properties 
  Toolox 44 T-1000 Epoxy 
G G [MPa] 80769.00 45337.00 

ultτ  [MPa]     693.00     680.00 
ρ  [g/cm3]         7.85         1.60 

 
The shear modulus value assigned to CFRP 

holds for a [±45n]s laminate and it is calculated by 
the theory of laminate plates [2]. The strength value 
corresponds with first-ply failure which is matrix 
cracking. Please note that the strength values of both 
materials are similar while the composite provides a 
higher compliance. 

The radius RS of the spring is fixed and that of 
the mandrel, RM, varies from zero to RS, enclosing in 
the range the pure carbon and pure steel spring 
designs. The evaluation of the structural behavior of 
the spring uses a FORTRAN code after an exact 
theory for thick-walled composite tubes [3]. Fig. 2 
presents the graphical results overview output of the 
program. The radial displacement variations are 
caused by material anisotropy (upper left). The shear 
strain increases linearly from the center to the 
surface while the radial strain oscillates from layer 
to layer (center left). The shear stress increases more 
rapidly in the steel core although higher values are 
reached further out in the CFRP body where the 
circumferential stresses alternate from layer to layer 
(bottom left). A similar alternating pattern appears in 

the local fiber stress distribution shown in the 
bottom center plot. Although the fiber stresses are 
much smaller, the probability of matrix cracking is 
much higher than that of fiber rupture as indicated in 
the bottom right plot. The twist angle is adjusted so 
that Hashin’s failure criteria [4] indicate near 
exhaust of matrix strength. 

 
Fig. 2.  Graphical Output Window TUBE program 

 
The deformation energy u per unit length is 

calculated by multiplying the applied limit torque T 
with the obtained twist angle ϕ. How these depend 
on the relative mandrel radius ρ= RM/RS is shown in 
Fig. 3. T increases with increasing mandrel radius up 
to r≈0.7 where ϕ remains relatively constant. Within 
this range, the structural strength is limited by matrix 
failure in the composite material. Beyond it the steel 
fails first so that the limit torque curve goes through 
a local minimum at r≈0.8. The following increase is 
because of the shear modulus of the steel being 
much higher than that of the composite material.  
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Fig. 3  Spring efficiency 
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A pure composite spring can store more 
deformation energy than one of steel but the material 
combination of a steel mandrel within a composite 
body obtains even higher efficiency, for the here 
estimated material properties, when r≈0.7. The 
mass-specific spring energy, shown in Fig. 4, is 
highest if the spring consists of composite material 
only and decreases with increasing mandrel diameter. 
The specific properties are relevant for all 
lightweight objectives such as low unsprung mass. 
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Fig. 4.  Mass-specific spring efficiency 

 

3 Load Introduction Problems 
The most obvious question is how to introduce 

the torque into a CFRP bar and we propose a 
hypothetical answer to it by the design principle 
indicated with Fig. 5.  

 

 

Fig. 5. Fiber-wound torsion bar design principle 
 

The CFRP torsion bar is fiber wound by using 
a mandrel with enhanced functionality: its diameter 
increases at the ends and there an annulus of spikes 
holds the fiber strands in place at the fiber-path 
turns. Beyond the spike annulus there is a region 
which can be serrated for connecting other parts 
with the torsion bar. The diameter increase reduces 
the stresses holding equilibrium to the applied 
torque. 

 
 

4 Design and Analysis models 

4.1 Geometry Model 
Fig. 3 uses a plot produced by the program to 

explain the geometry modeling. The numbers 
indicate the following measures: 

 
(1) active length of torsion bar 
(2) length of load introduction zone 
(3) width of side disk 
(4) width of groove toothing 
(5) base mandrel radius 
(6) active spring radius 

 

1 2 3 4

5 6
 

Fig. 6. Geometry Model 
Other measures, not shown in the Figure, 

are obtained by the fibre winding simulation and 
the automatic optimization procedure explained 
in Section 5.  

 
4.2 Fiber Winding Simulation 

The mandrel geometry is divided into two 
sections: the active spring zone 10 yy ≤≤  with 
constant mandrel base radius mbr  and the load 
introduction zone 21 yyy ≤≤  where the radius 

)(yr  tends to increase towards 2y . The fibre 
winding process leads to interwoven fibre 
architecture but, simplifying, we assume a 
laminate structure with distinguishable 
unidirectional layers. The most efficient fibre 
orientation for torsion is o45±=ϕ . 

Geodetic fibre winding obeys Clairaut’s law  

constcr ==)sin(ϕ   (5) 

and implies that the angle ϕ  decreases with 
increasing mandrel diameter. When fiber angles 
deviate from the optimum o45±=ϕ , both stiffness 
and strength of the fiber-wound body decrease. It 
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interests us how the negative effect of fiber angle 
decrease and the positive effect of diameter increase 
combine with regard to the load introduction 
problem. For an absolute fiber angle o45±=ϕ  in 
the active spring zone, we find, before placing the 
first layer, for the constant in Eq. 5 

2
2

mbrc =    (6) 

A change of radius, from mbr  to )(yrm , then 
changes the absolute value of the ¯fiber angle so that 

)(
)arcsin()(

yr
cy

m

=ϕ   (7) 

A layer thickness ah  within the active-spring 
section changes by the geometric mechanism 
illustrated in Fig. 7. The sketch on the left-hand side 
of the figure depicts the geometry at a reference 
radius 0r  and the other one captures the effects of 
changing the radius from 0r  to r . 
 

rmb rm(y)

∆y∆ymb  

Fig. 7. Mandrel Diameter Influence on Thickness 
 

The shaded regions represent a fiber strand of unit 
length at different angles and both regions contain 
the same volume. The axial length increment y∆  
follows from 

( ))(cos yy ϕ=∆   (8) 

The area over which the volume of the unit 
length fiber strand must be distributed changes from 

000 yrA ∆=  to )()( ryrrA ∆= . Consequently, a 
layer thickness )(rh  refers to a reference value ah , 
specified for the active spring region, by 

( ))(cos2
2)(

yr
rh

yr
yrhyh mb

a
mbmb

a ϕ
=

∆
∆

=  (9) 

Because of 

         
r
c

=−= )sin(,sin1cos 2 ϕ       (10) 

we find that 
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The above formulae assume the specified layer 
thickness ah  be small if compared with the mandrel 
base radius mbr , or mba rh << . If the assumption 
holds not true, one must subdivide the layer 
thickness into a sufficient number n  of sub-layers 
and evaluate the recursion 
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If the radius changes quickly along the axis, 
the thickness increment, which adds 
perpendicularly to the surface, must be 
decomposed in the r  and y  directions. It must 
also be taken into account that each layer 
produces a new surface which acts as a mandrel 
for the following layer. Finally, modeling of the 
structural behavior of the fiber-wound body 
requires transformation of the material law. 
There are two directions about which 
transformation must be performed: first about 
the radial direction r  for the winding angle ϕ  
and then about the circumferential direction θ  
for the angle ( ))(arctan yr=β . 

A pure 45±  fiber architecture, extending from 
the active spring region to the end of the load-
introduction zone, promises optimum efficiency but 
can only be achieved if slippage of the fibers during 
a non-geodetic fiber winding process can be 
prevented. The change of thickness with radius is 
then described with 

r
rhrh 0

0)( =   (13) 
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4.3 Analysis Model 
We consider a state of rotational symmetry and 

use the reference coordinates y , θ , and r  for the 
axial, circumferential, and radial directions, respect-
ively. Because of the anisotropy of the CFRP 
material we start with the general kinematical 
equations in cylindrical coordinates which we 
simplify by ignoring the circumferential variations 
of the strains and stresses: 
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The equilibrium conditions are: 
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The stresses and strains are connected by the 
material law 
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The finite-element method (FEM) [5] finds the 
numerical system equations for the nodal point 
displacements 

ruK =~    (17) 

The system stiffness matrix K  is assembled 
from the element contributions 

∑ ∫
Ω

=
EL

EL

N
T rdrdy

1

2 CBBK π  (18) 

and the specified natural boundary conditions σ̂  
give the nodal-point forces 

∑ ∫
Γ

Φ=
EL

EL

N

dsr
1

ˆ2 σπr                (19) 

The symbol B relates the element strains to the 
nodal point displacements and J stands for the 
determinant of the Jacobian matrix. Fig. 6 indicates 
that a geometric symmetry with respect to the center 
cross-section exists. Strain and stress distributions 
find the same symmetry which is therefore exploited 
to enhance numerical efficiency. At the center cross-
section geometric boundary conditions prevent axial 
and circumferential displacements. External torque 
is applied at the end where a tooth grooving is 
thought to exist even though not modeled in detail. 
There, Eq. 19 transforms an externally applied 
constant circumferential stress distribution σ̂  into 
kinematically equivalent nodal forces r . 

 
5 Optimization Model 

A torsion bar can not at the same time be 
arbitrarily compliant, bearing very high torque, and 
small. We have therefore chosen to design the 
torsion bar in two steps. The first step is to choose a 
design for the active length of the torsion bar where 
the mandrel and fiber-wound body are constant 
along the longitudinal direction. The second step is 
to find a design for the load introduction zone so that 
it can transmit the torque into the active length 
without creating peak stresses or wasting material. It 
is here where we apply automated optimization. 

 
5.1 Objectives and Constraints 

The objective of maximum energy storage 
capacity U implies that the active length is stressed 
to the limit before failure in the load introduction 
zone occurs. It also implies that the load introduction 
zone itself is as compliant as possible, adding to the 
overall spring efficiency. Apparently, the compli-
ance is constrained by strength: the specified torque 
must cause neither the mandrel nor the fiber-wound 
body to fail. 
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Thus, we state the constrained optimization 
problem as 

{ }0)()(min ≤−
∈

xgxU
nRx

               (20) 

The vector of constraining functions g contains 
the two entries mandrelg  and cfrpg . We assume that 
the mandrel consists of an isotropic material, where 
steel is a likely candidate. Then the strength can be 
checked by comparing an equivalent stress eqvσ  

with an admissible stress admσ , 

0≤−= admeqvmandrelg σσ                (21) 

using either Tresca's [6] maximum principal 
stress criterion or the von Mises [7] distortion 
energy hypotheses or, to be on the safe side, both. 
There are a number of failure criteria for 
unidirectional CFRP with different prediction 
abilities. Those by Tsai and Hill [8] or Tsai and Wu 
[9], for instance, use composite strength values and 
the stress state to evaluate an index a value of which 
in excess of one indicates failure, without any 
indication regarding the nature of it. Such criteria 
are, however, more conservative than the maximum 
stress criterion which distinguishes between fiber 
and matrix failure but does not take into account 
interaction between the various stress components. 
Better suited are the criteria by Hashin [4]: they 
predict fiber and matrix failure separately and take 
into account the effects of tensile and compressive 
stressing, which makes a set of four different 
criteria. Puck provides a physically better founded 
hypothesis [10] for matrix failure which provides the 
practitioner with the opportunity to obtain 
predictions better aligned with reality if he succeeds 
in procuring the necessary additional strength 
parameters. Here we choose Hashin's criteria which 
inform us that the strength limits of the fiber-wound 
body are defined by matrix failure.  

The constraining function then becomes 

( ) 01,,,max 4321 ≤−= ffffgcfrp      (22) 

where the if  stand for Hashin's four individual 
fail-ure criteria. The exterior penalty method 
transforms the problem statement Eq. 20 so that the 
minimum of a pseudo-objective function may admit 
only slight constraint violations 

{ })(min xP
nRx∈

                      (23) 

if the penalty factor PR  is set high enough 

( )CFRPmandrelPRUP Ω+Ω+−=         (24) 

The penalty functions iΩ  are calculated with 

[ ]{ }20),(max xii g=Ω              (25) 

 

5.2 Optimization Variables 

The variable design feature is the radius 
distribution of the mandrel within the load 
introduction zone including the side disk and the 
groove toothing. We invent free parameters only for 
the mandrel. The side disk radius equals the total 
radius of the adjacent fiber-wound body and the 
groove toothing radius is the same as that of the 
mandrel at the other side of the side disk. The 
thickness of the mandrel we parameterize with 
polynomial functions which should be even with 
respect to the center cross-section: 

6
3

4
2

2
1)( ηηη xxxryr am +++=        (26) 

where the normalized coordinate η  is convenient 

12

1

yy
yy

−
−

=η                     (27) 

Here, 1y  and 12 yy −  are the lengths of the 
active spring region and the load introduction zone, 
respectively. 
 
5.3 Design Improvement 

Starting from a given initial design the method 
of conjugate gradients [11] seeks improved solutions 
by minimizing the pseudo-objective Eq. 24. The 
method determines search directions s  along which 
best solutions must be identified by a line search. 
For the line search we use the method called Brent's 
routine [12] which combines the golden-section and 
quadratic-approximation methods. In contrast to the 
maximum-compliance objective, the strength 
constraints are not convex because the locations at 
which maximum stressing occurs may switch when 
changing the design variables. It is therefore that the 
here selected method of mathematical programming 
must be applied with care and finding the best 
design solution may depend on the choice of the 
starting point in variables space. 
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6 Results 
 
The fixed design parameters include a length 

of mml 1000=  and a diameter mmd 20=  of the 
fiber-wound body and we apply a torque 

NmT 1000= . These data allow reference to the 
preliminary results presented in Section 2.2. It is 
only for the benefit of the better visualization of the 
load transfer mechanism that we use for it the 
smaller length of mml 100= . 

 
6.1 Load Transfer Mechanism 

The upper half of each plot shown in Fig. 8 
visualizes the distribution of the circumferential 
displacement uµ where darker shades of grey 
correspond with higher displacement values. They 
increase with increasing distance from both the 
center cross-section and the axis of rotation, 
reaching maximum values at the side disk edge. 

 

a

b

c
 

Fig. 8. Torsion Bar Load Response 
 
The lower halves of the plots visualize the 

distribution of stresses θτ y  (a), rθτ  (b), and the 
failure indices (c) in the mandrel and fiber-wound 
body.  

The torsion shear stress distribution θτ y  (a) 
provides, together with the material compliance, the 
spring energy. It also tends to increase with 
increasing distance from the axis of rotation and the 
increase is fastest within the steel mandrel and the 
load introduction zone. This effect and the jump at 
the interface between the mandrel and fiber-wound 

body have a common cause: the shear stiffness of 
steel is higher than that of the composite. Noting the 
similarity between the distributions plotted in (a) and 
in (c) lets suspect that the torsion shear stress 
contributes most to the failure probability of the 
materials. 

The elements where the highest failure index 
values appear are marked in (c) with circles 
(mandrel) and squares (composite). One can also see 
that the failure index values in the active spring-
region globally increase with radius but vary from 
layer to layer because the fibers are alternatively 
loaded in tension and compression, respectively. 

The shown design solution can not be optimum 
since failure will occur within the load-introduction 
zone before the fiber-wound body can store a 
maximum of deformation energy. However, the low 
values of failure indices adjacent to the side disk 
answer our key question, of whether the proposed 
design principle is feasible, in the affirmative. 

The mechanism of load transfer from the tooth-
grooved end through the mandrel into the fiber-
wound body evokes the shear stress rθτ . To better 
visualize the mechanism, the plot (b) has been scaled 
with respect to the highest value appearing between 
center cross-section and side disk. 

 
6.2 Active-Spring Length Fraction Influence 

We investigate the influence of the length of 
the active spring region on the torsion spring 
performance and for it we keep the base mandrel 
diameter at mmd 1= . Fig. 9 shows torsion angle, 
mass, and the failure indices for mandrel and fiber-
wound body for the various length ratios of active 
spring to fiber-wound body.  
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Fig. 9. Influence of Active-Spring Length Fraction 

 
With increasing length ratio the torsion angle 

increases monotonically but the monotony of mass 
decrease is interrupted at 6.0/ =llas . The 
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composite-failure index stays initially constant at 
07.1=ci  and starts to increase at 7.0/ =llas . Both 

effects have to do with the shifting of the location 
where the composite strength first reaches its limit: 
initially the critical point lies within the active-
spring region and then it moves into the load-
introduction zone.  

This implies that, in practice, length ratios 
should be kept small enough for the critical stressing 
of the composite to remain in the active-spring 
region or, with the present data set, 5.0/ ≤llas . 

 
6.3 Mandrel Base Diameter Influence 

Here we investigate the influence of the 
mandrel base diameter and for it we keep the active 
spring length ratio 1.0/ =llas . Since the torque is 
always NmT 1000=  and the steel material 
provides higher shear modulus than the composite, 
the twist angle decreases with increasing mandrel 
base diameter as Fig. 10 shows.  
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Fig. 6. Twist Angle 

 
The lower curve corresponds with using, in 

polynomial shape parameterization (26), only 1x  
and the upper one is achieved using 2x  also. 
Including the third parameter 3x  did not give 
noticeable further change of results. 

Obviously, larger values of the mandrel base 
diameter incur further disadvantage in terms of 
weight increase as Fig. 11 testifies. 
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Fig. 11. Weight Factor 

 
We have noticed in Section 4.1 that the load 

transfer mechanism relies mostly on the shear 
component θτ y  and Fig. 8 shows the distributions 
along the interface between mandrel and fiber-
wound body for the different values of mandrel base 
radius. It appears that absolute stress values tend to 
increase with decreasing based  but at mmdbase 10≈  
a change-of-sign occurs. Since this boldly plotted 
stress curve exhibits the lowest absolute stress 
values, the said diameter value holds the lowest risk 
of loosing interface contact which plays such a 
crucial role in the load transfer mechanism. 
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Fig. 8. Shear Stress θτ y  Distribution 
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Conclusions 
Even though early matrix cracking prevents the 

full utilization of fiber strength, torsion bars made 
from CFRP can store higher deformation energy 
than those made from steel. The advantage increases 
if one is interested in lightweight design solutions. 

The search for an answer to the question of 
how to introduce the load into the composite bar has 
led to a design principle where a CFRP body is 
wound around a multi-functional steel mandrel 
which increases its radius towards the end which 
holds a spike annulus and also serves as adapter to 
connect with external parts. 

The shape transition from the active-spring to 
the load-introduction zones has been optimized by 
using a parameterized geometry model and a 
mathematical programming technique. The 
geometry model takes, via fiber winding simulation, 
into account the dependence between mandrel and 
CFRP body shapes. The FEM analysis model 
utilizes rotational symmetry but calculates a fully 
three-dimensional stress state.  

The identified design problem is to reach an 
almost even distribution of failure probability along 
the bar and for both materials.  

The further problem of interface failure 
between mandrel and CFRP has also been address-
ed. It has been shown that the base mandrel diameter 
can be adjusted to minimize the interface shear 
stress θτ y . 
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