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SUMMARY: This paper addresses two important phenomena associated with interpretation
of experimental viscoelastic material property data and of direct application to composites. (1)
The influences of distinct ramp loading functions and of the rise time to full load on experi-
mental material characterizations are investigated analytically and through numerical simula-
tions and their important contributions to accurate material characterization are evaluated. (2)
It is further demonstrated that the determination of relaxation and/or creep functions from the
same experimental data in real time is a preferable protocol as it avoids additional unnecessary
errors introduced through numerical transform inversions.
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INTRODUCTION

Experimental determinations of viscoelastic material properties are fraught with multiple pit-
falls, such as non-repeatable tests on the same specimen, large data scatter, long time creep and
relaxation data gathering, decelerating time effects due to lower temperatures and moisture
contents, ineffective Laplace transform (LT) and Fourier transform (FT) compliance determi-
nations from moduli transforms, to mention only a few. An additional set of problems arise
from the fact that in many instances, particularly in polymers and composites, at temperatures
above 21◦ C (70◦ F) and with moisture contents above .1 %, creep and relaxation initiation
takes place in relatively short times compared to the largest relaxation times (Fig. 1). This re-
quires impositions of loading patterns at sufficiently fast enough rates to achieve steady state
loading conditions long before the start of creep and relaxation. Slow loading rates will cause
loads (stresses) to intercept modulus curves too late and result in erroneous and misleading
determinations of instantaneous elastic moduli E(0) = E0, relaxation functions φ(0) = φ0

and/or creep functions ψ(0) = ψ0 (Fig. 1). As a matter of fact, the literature is replete with
reports of E0 dependence on temperature, when because of too slow loading rates partially
relaxed values of viscoelastic moduli (or relaxation/creep functions) were actually measured
and reported as elastic moduli E0.

Equally disturbing are attempts to determined within acceptable precision boundaries, compli-
ance time functions from moduli or creep functions from relaxation functions and vice versa
in the time plane based on approximate time modulus/compliance relations instead of in the
LT or FT domains based on exact relations. While such attempts are usually “justified” on the
basis of inabilities to perform accurate numerical LT or FT inversions from numerical exper-
imental data, the source of large (∼ 100%) errors are discussed in detail in Beldica & Hilton
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(1999), which also includes a comprehensive FFT bibliography.) Numerous highly efficient
and accurate methods are readily available and can be carried out on desk top computers and
certainly on work stations as well as on massively parallel supercomputers. More importantly,
however, it is also shown that the LT or FT inversion accuracy problem can be totally avoided
by working directly with the experimental data in the time domain to determine both relax-
ation and creep functions (or moduli and compliances) from the same experimental data set.
Additionally, the separate importance of subjecting test specimens to two simultaneous load-
ings in order to recover both shear and Young’s moduli are also discussed (Deng & Knauss
1997, Ravi-Chandar 1998).

In this paper, the influence of proper loading functions (rates) and the effects of inertia during
high rate loadings are analyzed and evaluated with the help of numerical simulations under
quasi-static and dynamic simulated experimental conditions. Various representative loading
functions are considered and their relative merits are compared in so far proper material char-
acterization is concerned.

Since numerical values of material parameters are sought, meaningful experiments need to be
devised which can be solved analytically with symbolic values for the as yet unknown material
parameters. Two distinct problems arise which influence material property determinations,
namely (A) how steady state loads are achieved and (B) the effects of dynamic contributions
due to specimen inertia. Both of these are considered separately and their effects are evalu-
ated .

Bland (1960) and Kolsky (1963) have presented analytical formulations of viscoelastic wave
propagations. Experimental studies of high dynamic loadings rates by Powers et al. (1995)
using a split Hopkinson pressure bar have demonstrated the ability to determine instantaneous
material properties in isotropic materials as well as in composites.

Due to space limitations, only summary concepts are presented here and full analyses and ref-
erences may be found in Beldica & Hilton (1999).

ANALYSIS

Since numerical values of material parameters are sought, meaningful experiments need to be
devised which can be solved analytically with symbolic values for the as yet unknown material
parameters. Two distinct problems arise which influence material property determinations,
namely (A) how steady state loads are achieved and (B) the effects of dynamic contributions
due to specimen inertia. Both of these will be considered separately and their effects will be
evaluated.

Consider a “simple” 1-D tension or compression (without buckling) creep experiment. In a
Cartesian coordinate system x = xi with i = 1, 2, 3 and x1 the loaded direction. Whether
or not shear is present at x1 = 0 in the x2-direction has no bearing on the loading function
formulation, but, of courses, influences internal stress distributions.

The loading function is defined in three time domains as (Fig. 2)

F (t) =



0 t ≤ 0

F0 f(t) 0 ≤ t ≤ t1

F0 H(t− t1) t ≥ t1

(1)

where F0 is a constant and f(t) is typically one of such representative functions as

f(t) =



H(t) t1 = 0 and t ≥ 0 Case 1

t / t1 0 < t1 << τ1 Case 2

.5 [1 − cos(π t / t1)] 0 < t1 << τ1 Case 3

(2)



         

where H(t) is the Heaviside unit step function. While mathematically all three functions are
attainable, the only physically “reasonable” function is the third one, although other similar
variations are equally acceptable, as it defines a gradual load rise from 0 to unity with vanish-
ing slopes at t = 0 and t = t1.

The time t1 necessary to achieve the constant load F0 is dictated by the laboratory equipment
used to induce loadings. While t1 has no predetermined relation to t0, the time when relaxation
begins, i. e. the relaxation modulus E(t0) = E0 (the instantaneous elastic Young’s modulus)
and E(t) < E0 for t > t0, the determination of moduli values are strongly influenced by the
relative position of to and t1. (See Table 1.)

The stress-strain relations for a linear homogeneous viscoelastic material with constant tem-
perature and moisture content are given by (Christensen 1982, Hilton 1964a, Hilton & Dong
1964b)

σij(x, t) =

t∫
0

Eijkl(t− t′) εkl(x, t′) dt′ =

t∫
0

φijkl(t− t′)
∂εkl(x, t

′)

∂t′
dt′ (0 ≤ t ≤ ∞) (3)

εij(x, t) =

t∫
0

Jijkl(t− t′) σkl(x, t′) dt′ =

t∫
0

ψijkl(t− t′)
∂σkl(x, t

′)

∂t′
dt′ (0 ≤ t ≤ ∞) (4)

where Eijkl, Jijkl, φijkl and ψijkl are respectively the anisotropic relaxation moduli, compli-
ances and relaxation and creep functions. While for anisotropic viscoelastic materials, there
may be as many as 21 distinct functions for each of these, in the isotropic case only any two
moduli or compliances (Young’s, shear, bulk) or relaxation or creep functions or one of these
and Poisson’s ratio are needed to completely describe any material response plus, of course,
thermal strain functions for non-isothermal conditions. However, Hilton & Yi (1997) have
shown that linear viscoelastic Poisson’s ratios ν(t) under many conditions are not only time
dependent, but also a function of load and load path thus rendering ν non-unique and inappro-
priate for general material characterization. Additionally, normal strain measurements in two
different directions are extremely difficult to obtain in non-metallic materials. Consequently,
it is necessary to independently obtain any two of the three moduli or their corresponding creep
or relaxation functions.

Deng & Knauss (1997) have devised experiments and apparatus to successfully measure the
temperature and frequency dependence of dynamic bulk compliances of polyvinyl acetates.
Pointing (1912) in an early work measured the shortening of a steel wire while being twisted,
thus obtaining both elastic shear and Young’s moduli from a single experiment. Popelar el
al. (1990), among others, conducted extensive stress relaxation experiments at constant strain
rates for viscoelastic characterization of polyethylene and presented master relaxation curves
for this material. Ravi-Chandar (1997) has reported experiments of simultaneous volume di-
latations and torsion, which produces characterizations of viscoelastic bulk and shear moduli
from the same data. This procedure alleviates some of the experimental data scatter problem
ever present in viscoelastic materials and which is additionally severely amplified when nor-
mal and shear strains are measured separately on different test specimens.

For isotropic conditions, the material property functions are related to each other through their
Laplace (LT) or Fourier transforms (FT) of Eqs. (3) and (4) as

E(p) =
1

J(p)
= p φ(p) =

1

p ψ(p)
=

3G(p)

1 + G(p)/K(p)
=

3 p φs(p)

1 + φs(p)/φv(p)
(5)

Similar relations apply to G and K, respectively the isotropic shear and bulk moduli.
Their FT can be obtained through the fundamental inter-relation - provided the LT and FT each
exist

FT {f(t)} = f(ω) = f(p)

∣∣∣∣∣
p=ı ω

(6)



        

Through the use of mechanical models, such as the generalized Kelvin (GKM) and generalized
Maxwell (GMM) models, it can be shown that material properties are expressible in terms of
Prony series

φ(t) = φ∞ +
N∑
n=1

φn exp(−t/τn) and ψ(t) = ψ0 +
N∑
n=1

ψn [1 − exp(−t/τn)] (7)

where the φn, ψn, τn and N are material property parameters to be determined by creep ex-
periments under consideration. Similar expressions for E(p) and J(p) are obtainable from
Eqs. (5) and (7). The instantaneous elastic values are then given by

φ(0) = φ0 = φ∞ +
N∑
n=1

φn > φ∞ and ψ(∞) = ψ∞ =
N∑
n=0

ψn > ψ(0) = ψ0 (8)

where φ∞ and ψ∞ are the fully relaxed values attainable only in relatively long times (Fig. 1).
Expressions similar to Eqs. (7) can be derived for bulk and shear relaxation and creep functions
(Beldica & Hilton 1999).

In a quasi-static analysis, at significant distances away from the supported end of the bar where
St. Venant’s principle applies, the normal stresses σ11(t) for x1 > 0 are essentially directly
related to the end loads at x1 = 0 & L as σ11(t) = F (t)/A, whereA is the cross sectional area
of the specimen.

When creep or relaxation experiments are conducted to determine material properties, one pre-
scribes either stresses or strains and measures the other one. For instance in creep experiments
where the load is known, the integral in Eq. (4) can be solved analytically by expressing ψ(t)
in terms of Prony series of Eq.(7). This leads to a nonlinear algebraic system of equations in
the relaxation times τn

ε11(t) = σ0
11

ψ0 f(t) +
N∑
n=1

ψn
τn

t∫
0

f(t′) exp

(
−t− t

′

τn

)
dt′

 for t < t1

ε11(t) = σ0
11

ψ0 +
N∑
n=1

1 − exp
(
−t− t1

τn

)
+

1

τn

t∫
0

f(t′) exp

(
−t− t

′

τn

)
dt′


for t ≥ t1 (9)

where σ0
11 = F0/A and the unknown values are N, ψ0, ψn and τn for n = 1 to N . The value

of N is determined by trial and error so that ψ(t) satisfies Eq. (9) to a preassigned degree of
accuracy.

Similarly, relaxation functions can be determined from the same experimental data by invok-
ing Eq. (3). The measured strains collected in tabular form as variables of time can be recov-
ered in the time domain as analytical expressions by the method of least squares. Considering
the typical shape of strain curves for viscoelastic materials, a curve fit using Prony series is
convenient

ε11(x1, t) = ε0(x1) +
M∑
m=1

Am(x1)
[
1 − exp

(
− t

τm

)]
(10)

Replacing this relation and the expression for φ(t) given by Eq. (6) into Eq. (3) gives after
integration an expression similar to Eq. (10) for the measured σ11 and for the unknown φn
and τn. These allow φ∞, φn and τn for n = 1 to N to be determined by least square method.
This protocol eliminates the necessity of calculating ψ from φ (or vice versa) by imposing
an extra layer of approximate fast LT or FT approximate numerical inversion schemes. This



           

Table 1 - Definitions of Characteristic Times

TIME DEFINITION
t0 beginning of relaxation when 1− E(t)/E0 ≤ ε̃0 for t ≥ t0
t1 end of rise time when F (t) = F0 for t ≥ t1
t2 = L/c0 time when wave reaches x1 = L from x1 = 0
tR fully relaxed time when 1− E(t)/E∞ ≤ ε̃∞ for t ≥ tR

t1 < t0 < tR and tR ≤ t2 or tR ≥ t2
Note: t0, t1, t2 and tR are independent of each other

and where ε̃0 and ε̃∞ each are¿ 1

point will be amplified and discussed in detail in a subsequent section. Care must, of course,
be exercised to use identical N and τn values for both φ and ψ determinations.

In order to simplify the determinations of the unknowns and to linearize Eq. (10), one can as-
sume a set of characteristic values for τn, such as for instance τn = 10n. Such prescribed τn
are not their proper physical values corresponding to real relaxation times. Nor do the φn or
ψn coefficients thus obtained represent physical values including the possibility of some indi-
vidual negative signs, unless the τn are adjusted by trial and error. However, since in general
one is only interested in the entire function φ(t) or ψ(t) and not its detailed individual parts,
the present approach is ideally suited to determine relaxation and/or creep functions in toto.
An identical procedure with the same experimental data can again be used to obtain creep and
relaxation functions φ and ψ from Eqs. (3) or (4). The recent work by Bradshaw & Brinson
(1997) presents a more inclusive approach for the determination of compliances or moduli,
since it guarantees proper detailed coefficient values including their algebraic signs.

If shear is generated through torsion with the same force F (Ravi-Chandar 1997), then the
torque MT (t) = eF (t) (where e is a moment arm) obeys the same time definitions as F (t).
The torque and strains (rotational angles) can be measured experimentally. Using identical
analytical formulations to those above for normal stresses and strains above, one can find the
shear relaxation and creep functions φs and ψs (Beldica & Hilton 1999). Bulk relaxation func-
tions can then be calculated from Eq. (5) or through individual volumetric experiments.

Bland (1960) has analyzed the 1-D impact problem of an isotropic homogeneous viscoelastic
bar taking into account inertia and wave effects. Such analyses and experiments are an ex-
cellent vehicle for establishing correct values for the instantaneous elastic modulus E0, since
the latter is directly related to the readily measurable propagation velocity of the viscoelastic
wave.

When considering dynamic behavior, an additional time parameter comes into play, namely
t2 the time for longitudinal waves to travel from their point of origin at x1 = 0 to x1 = L
and be reflected. The wave speed c0 is elastic, however the end force is applied and whatever
the linear viscoelastic properties E(t) might be provided only that they exhibit instantaneous

linear elastic responses. Under such conditions it is given by t2 = L/co = L
√
ρ/Eo, with ρ the

density of the viscoelastic material. (See Table 1 for definitions of the various characteristic
times.)

The governing PDE for the dynamic longitudinal displacement u1(x1, t) in an isotropic ho-
mogeneous linear viscoelastic material is

∂2u1(x1, t)

∂t2
= c20

t∫
0

Ẽ(t− t′) ∂
2u1(x1, t

′)

∂x2
1

dt′ x1 ∈ (0, L) t ∈ (0,∞) (11)

with E(t) = E0 Ẽ(t) and 1 ≤ Ẽ(t) ≤ E∞/E0. In the LT space this PDE reduces to



         

p2 u1(x1, p) = c20 Ẽ(p)
∂2u1(x1, p)

∂x2
1

(12)

Bland (1960) analyzed a rod with an impact load of −Î0δ(t) at x1 = L with a free end at
x1 = 0 and obtained the solution

σ11(x1, t) = − Î0
π
<


∞∫
0

exp
(
ı ω

[
t− x1

√
ρ J(ω)

])
dω

 (13)

where Î0 is amplitude of the impact force per unit area.

In order to evaluate dynamic contributions to material property determinations, it is necessary
to formulate the analysis for the loading patterns of Eqs. (1) and (2). First, it must be noted
that Case 1, the Heaviside step function, is not feasible under dynamic conditions because its
instantaneous load deployment presents a contradiction when inertia is taken into account. In
Case 2, the linear load buildup in time gives rise to discontinuous time derivatives and infi-
nite accelerations at t = 0 and t = t1 and, therefore, is not acceptable dynamically. Case 3
provides a smooth load transition of F (t) from 0 to F0 with second derivatives of±.5(π/t1)

2

at t = 0 and t1 respectively and is, therefore, reasonable physically and acceptable mathe-
matically, although other functions with similar time rise characteristics may also be defined.

The solution of Eqs. (11) and (12) before reflection takes place is

u1(x1, p) = fu
[
p, x1, c0c̃(p)

]
(14)

or

u1(x1, p) = A(p) sinh
[
k(p) x1

]
+ B(p) cosh

[
k(p) x1

]
(15)

with k(p) =
p

c0

√
Ê(p)

for 0 ≤ t ≤ t2 and 0 ≤ x1 ≤ L

where the functions fu, A and B are determined from boundary conditions and where

c(p) =
√
ρ/E(p) = c0 c̃(p) c0 =

√
ρ/E0 E(p) = E0 Ê(p) (16)

c̃(p) =

√
1/Ẽ(p) =

√
J̃(p) with 1 ≤ c̃(p) ≤

√
J∞/J0 (17)

The boundary conditions for Case 3 are

σ11(0, t) =


.5 σ0

11 [1 − cos (π t/t1)] 0 ≤ t ≤ t1

σ0
11 H(t− t1) t ≥ t1

(18)

u1(L, t) = 0 0 ≤ t ≤ ∞ (19)

The 1-D governing relations (11) and (12) have a viscoelastic dynamic solution in t ≥ t1 for
the above BC in the form of

σ11(x1, p) = E(p) ε11(x1, p) = E(p)
∂u1(x1, p)

∂x1

= p φ(p)
∂u1(x1, p)

∂x1

= (20)
c20 σ

0
11

[
I1(p) + I2(p)

]
p2︸ ︷︷ ︸
A(p)



cosh
[
k(p) x1

]
− tanh

[
k(p)L

]
︸ ︷︷ ︸

B(p)/A(p)

sinh
[
k(p) x1

]



         

where the I1 and I2 represent the LT integrals from 0 to t1 and t1 to∞. Note that the func-
tions k and E contain the as yet unknown material parameters, thus making a numerical LT
inversion of Eq. (20) impossible. Formally, it can be inverted analytically much more readily
as a FT by making use of relation (6)

σ11(x1, t) =
1

π
<


∞∫
0

σ11(x1, ω) exp (ı ω t) dω

 (21)

The inversion (21) cannot be carried out analytically because of the complexity of Eq. (20),
integration by the convolution theorem cannot also be performed without prior knowledge of
material properties. However, the results of these dynamic experiments serve to determine
uniquely and accurately the value of the elastic modulus Eo and to check material property
values determined by quasi-static experiments. (For details see Beldica & Hilton 1999.)

NUMERICAL SIMULATIONS AND DISCUSSION OF RESULTS

Loading protocols and their relation to creep and relaxation functions are shown in Figs. 1 and
2. As discussed before, the loading pattern and especially the time needed for the load (stress)
to reach steady state conditions is reflected on the accuracy with which the material character-
istics are determined. To exemplify this, a creep function was assumed and the corresponding
strain curves were determined for the load cases 1, 2 and 3. Next the reference characteristic
curve was shifted to the left, as would happen with temperature and/or moisture content in-
crease. Since load case 1 represents an ideal situation, the shift does not affect the shape of
slope of the strain curve (Fig. 3). For cases 2 and 3 the strain curves are altered if the stresses
intercept the modulus curves after the material has started creeping (Fig. 4). It is worth em-
phasizing that a given load rate can be qualified as too slow not by the value of t1, but by the
relative position of t1 to the creep function.

The next set of graphs present the creep functions determined by solving Eq. (9) for a given
load case and different values of the loading time t1. For illustration purposes the strain curves
were established assuming that the material characteristics are known. The results obtained
following the proposed procedure were compared to this reference curve. Times t1 were cho-
sen here by evaluating the increase in ψ(t1) compared to ψ0. Since the values t1 are not sig-
nificant on their own, they will be identified on the plots by the relative increase in ψ(t1) from
ψ0.

Figs. 5 and 6 represent creep curves obtained by assuming that the loading conforms to an
ideal situation, i.e. by replacing f(t) = H(t) in Eq. (9). If the strain values used when solving
the system of equations correspond indeed to case 1, the creep curve is recovered with good
accuracy (less than 0.5% error forN = 33 terms in Prony series). However, if a more realistic
situation is considered (case 2 and 3), the material characteristics are determined with some
error depending on t1. In Fig. 5 the strains were obtained from load case 2 and all the points
t < t1 were left out of the computation. As expected, the largest deviation appears in the
values of ψ0. Almost identical results were obtained using strains corresponding to load case
3 (Fig. 6).

For the next set of computations, the Prony coefficients were determined by replacing f(t) =
t/t1 in Eq. (9). If all points on the strain curve are used for the computation (including t < t1)
then the creep curve is determined very accurately if the strain corresponds to the same loading
situation (Fig. 7). If this is not the case the algorithm breaks. A more conservative approach
in which only the points t > t1 are taken into account produces good results not only for the
correct loading case, but also for similar loading patterns (Figs. 8 and 9). It is important that
the time t1 used for the least square method is the same as the one encountered in the loading
pattern. Overestimating t1 will lead to larger values for ψ(t) as shown in the limit in Fig. 9
where the strains were obtained from load case 1. As a note of caution, for loading rates that
go well into the creep portion of the characteristic curve the linearized least square algorithm
can lead to badly scaled or close to singular matrices. This can be circumvented by increasing
the number of terms in the Prony series and adjusting the set of characteristic times τn. Fig. 10
is similar to 5 except for different loading simulations, but exhibiting similar patterns.



        

Figs. 11 and 12 depict the results of the time domain relaxation function determination from
the above described creep data. As before the relative errors are not caused by the used pro-
tocols but are due to the long t1 loading times.

CONCLUSIONS

It is shown that loading patterns distinctly affect the determination of viscoelastic material
property parameters, leading to possible erroneous or misleading characterizations. It is fur-
ther demonstrated that it is possible to determine relaxation and creep functions in the time do-
main from identical test data, thus eliminating the need for approximate or numerical Laplace
transform inversions and their inherent inaccuracies, which affect exact characterization de-
terminations.
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Fig. 3   RELAXATION  FUNCTION  TIME  SHIFTS
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Fig. 5  LOAD  RAM  FUNCTIONS  AND  RELAXATION  FUNCTION
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Fig. 6  LOADING  RAM  TIME  VS.  LARGEST  RELAXATION  TIME
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Fig. 8  PER  CENT  ERROR  FOR  J  APPROXIMATION 
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Fig. 9  MAXIMUM  %  ERROR  FOR  J  APPROXIMATION 
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Fig. 10  STATISTICAL  RELAXATION  FUNCTION  DISTRIBUTION
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