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SUMMARY:: This paper addresses two important phenomena associated with interpretation
of experimental viscoel astic material property dataand of direct application to composites. (1)
The influences of distinct ramp loading functions and of the rise time to full load on experi-
mental material characterizations areinvestigated analytically and through numerical simula-
tions and their important contributions to accurate material characterization are evaluated. (2)
It isfurther demonstrated that the determination of relaxation and/or creep functions from the
same experimental datain real timeisapreferable protocol asit avoids additional unnecessary
errorsintroduced through numerical transform inversions.
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INTRODUCTION

Experimental determinations of viscoelastic material properties are fraught with multiple pit-
falls, such as non-repeatabl e tests on the same specimen, large data scatter, long time creep and
relaxation data gathering, decelerating time effects due to lower temperatures and moisture
contents, ineffective Laplace transform (LT) and Fourier transform (FT) compliance determi-
nations from moduli transforms, to mention only afew. An additional set of problems arise
from thefact that in many instances, particularly in polymers and composites, at temperatures
above 21° C (70° F) and with moisture contents above .1 %, creep and relaxation initiation
takes placein relatively short times compared to the largest relaxation times (Fig. 1). Thisre-
quires impositions of loading patterns at sufficiently fast enough rates to achieve steady state
loading conditions long before the start of creep and relaxation. Slow loading rates will cause
loads (stresses) to intercept modulus curves too late and result in erroneous and misleading
determinations of instantaneous elastic moduli £(0) = Ey, relaxation functions ¢(0) = ¢y
and/or creep functions 1(0) = 1, (Fig. 1). Asamatter of fact, the literature is replete with
reports of F, dependence on temperature, when because of too slow loading rates partially
relaxed values of viscoelastic moduli (or relaxation/creep functions) were actually measured
and reported as elastic moduli .

Equally disturbing are attemptsto determined within acceptabl e precision boundaries, compli-
ance time functions from moduli or creep functions from relaxation functions and vice versa
in the time plane based on approximate time modulus/compliance relations instead of in the
LT or FT domains based on exact relations. While such attempts are usually “justified” on the
basis of inabilities to perform accurate numerical LT or FT inversions from numerical exper-
imental data, the source of large (~ 100%) errors are discussed in detail in Beldica & Hilton
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(1999), which also includes a comprehensive FFT bibliography.) Numerous highly efficient
and accurate methods are readily available and can be carried out on desk top computers and
certainly onwork stationsaswell ason massively parallel supercomputers. Moreimportantly,
however, it isalso shown that the LT or FT inversion accuracy problem can be totally avoided
by working directly with the experimental data in the time domain to determine both relax-
ation and creep functions (or moduli and compliances) from the same experimental data set.
Additionally, the separate importance of subjecting test specimens to two simultaneous |oad-
ings in order to recover both shear and Young's moduli are also discussed (Deng & Knauss
1997, Ravi-Chandar 1998).

In this paper, the influence of proper loading functions (rates) and the effects of inertiaduring
high rate loadings are analyzed and evaluated with the help of numerical simulations under
guasi-static and dynamic simulated experimental conditions. Various representative |oading
functions are considered and their relative merits are compared in so far proper material char-
acterization is concerned.

Since numerical values of material parameters are sought, meaningful experiments need to be
devised which can be solved analytically with symbolic valuesfor the asyet unknown material
parameters. Two distinct problems arise which influence material property determinations,
namely (A) how steady state loads are achieved and (B) the effects of dynamic contributions
due to specimen inertia. Both of these are considered separately and their effects are evalu-
ated .

Bland (1960) and Kolsky (1963) have presented analytical formulations of viscoelastic wave
propagations. Experimental studies of high dynamic loadings rates by Powers et al. (1995)
using asplit Hopkinson pressure bar have demonstrated the ability to determine instantaneous
material properties in isotropic materials as well asin composites.

Dueto space limitations, only summary concepts are presented here and full analyses and ref-
erences may be found in Beldica & Hilton (1999).
ANALYSIS

Since numerical values of material parameters are sought, meaningful experiments need to be
devised which can be solved analytically with symbolic valuesfor the asyet unknown material
parameters. Two distinct problems arise which influence material property determinations,
namely (A) how steady state loads are achieved and (B) the effects of dynamic contributions
due to specimen inertia. Both of these will be considered separately and their effects will be
evaluated.

Consider a“simple” 1-D tension or compression (without buckling) creep experiment. In a
Cartesian coordinate system x = x; with7 = 1,2,3 and z; the loaded direction. Whether
or not shear is present at z; = 0 in the z,-direction has no bearing on the loading function
formulation, but, of courses, influences internal stress distributions.

The loading function is defined in three time domains as (Fig. 2)

0 t<0
F(t) = B f(t) 0<t<t (1)

FoH(t—t) t>1t
where I, isaconstant and f(¢) istypically one of such representative functions as
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where H (t) isthe Heaviside unit step function. While mathematically all three functions are
attainable, the only physically “reasonable” function is the third one, although other similar
variations are equally acceptable, asit defines agradual load rise from O to unity with vanish-
ingslopesatt =0 andt = t;.

Thetime t; necessary to achieve the constant load Fyj is dictated by the laboratory equipment
used to induceloadings. Whilet; hasno predetermined relationto ¢, thetimewhen relaxation
begins, i. e. the relaxation modulus E(ty) = E, (the instantaneous elastic Young's modulus)
and E(t) < Ej fort > t,, the determination of moduli values are strongly influenced by the
relative position of ¢, and ¢;. (See Table 1.)

The stress-strain relations for a linear homogeneous viscoel astic material with constant tem-
perature and moisture content are given by (Christensen 1982, Hilton 19644, Hilton & Dong
1964b)
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where E; i, Jijki, ¢ijin and 1,5, are respectively the anisotropic relaxation moduli, compli-
ances and rélaxation and creep functions. While for anisotropic viscoelastic materials, there
may be as many as 21 distinct functions for each of these, in the isotropic case only any two
moduli or compliances (Young's, shear, bulk) or relaxation or creep functions or one of these
and Poisson’s ratio are needed to completely describe any material response plus, of course,
thermal strain functions for non-isothermal conditions. However, Hilton & Yi (1997) have
shown that linear viscoelastic Poisson’s ratios v(¢) under many conditions are not only time
dependent, but also afunction of load and load path thus rendering » non-unigue and inappro-
priate for general material characterization. Additionally, normal strain measurementsin two
different directions are extremely difficult to obtain in non-metallic materials. Consequently,
itisnecessary to independently obtain any two of thethree moduli or their corresponding creep
or relaxation functions,

Deng & Knauss (1997) have devised experiments and apparatus to successfully measure the
temperature and frequency dependence of dynamic bulk compliances of polyvinyl acetates.
Pointing (1912) in an early work measured the shortening of a steel wire while being twisted,
thus obtaining both elastic shear and Young’'s moduli from a single experiment. Popelar €
al. (1990), among others, conducted extensive stress rel axation experiments at constant strain
rates for viscoelastic characterization of polyethylene and presented master relaxation curves
for this material. Ravi-Chandar (1997) has reported experiments of simultaneous volume di-
latations and torsion, which produces characterizations of viscoelastic bulk and shear moduli
from the same data. This procedure alleviates some of the experimental data scatter problem
ever present in viscoelastic materials and which is additionally severely amplified when nor-
mal and shear strains are measured separately on different test specimens.

For isotropic conditions, the material property functions are related to each other through their
Laplace (LT) or Fourier transforms (FT) of Egs. (3) and (4) as

1 3Gl 3pdp)
pi(p) 14+ Gp)/Kp) 1+ op)/oup)
Similar relations apply to G and K, respectively the isotropic shear and bulk moduli.

Their FT can be obtained through the fundamental inter-relation - provided the LT and FT each
exist

= pop) = (5)
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Through the use of mechanica models, such asthe generalized Kelvin (GKM) and generalized
Maxwell (GMM) models, it can be shown that material properties are expressible in terms of
Prony series

o) = b + X bwespl—t/m) and V() = v+ D vll — esp(—t/m)] (D)

where the ¢,,, v, 7, and N are material property parameters to be determined by creep ex-

periments under consideration. Similar expressions for E(p) and J(p) are obtainable from
Egs. (5) and (7). The instantaneous elastic values are then given by

N N
¢(0) = ¢0 = ¢00 + qun > qboo and 1/1(00) = 'lvboo = Zdjn > ¢(0) = 77ZJO (8)
n=1 n=0

where ¢, and v, arethefully relaxed values attainable only in relatively long times (Fig. 1).
Expressionssimilar to Egs. (7) can bederived for bulk and shear relaxation and creep functions
(Beldica& Hilton 1999).

Inaquasi-static analysis, at significant distances away from the supported end of the bar where
St. Venant's principle applies, the normal stresses oy, (¢) for z; > 0 are essentialy directly
related totheend loadsat 1 = 0 & L asoy(t) = F(t)/A, where A isthe cross sectional area
of the specimen.

When creep or rel axation experiments are conducted to determine material properties, one pre-
scribes either stresses or strains and measures the other one. For instancein creep experiments
where the load is known, theintegral in Eq. (4) can be solved analytically by expressing v(t)
in terms of Prony series of EQ.(7). Thisleadsto anonlinear algebraic system of equationsin
the relaxation times 7,,

en(t) = o)

N ¢ /
o f(t) + Z%/f(t') exp (—t_t> dt’} fort < t;
0

n—1 Tn Tn
N t—t 1 t—t
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= Tn o) Tn
for t>t; 9

where 69, = F,/A and the unknown values are N, 1, v, and ,, for n = 1 to N. The value
of N isdetermined by trial and error so that v/(¢) satisfies Eq. (9) to a preassigned degree of
accuracy.

Similarly, relaxation functions can be determined from the same experimental data by invok-
ing Eq. (3). The measured strains collected in tabular form as variables of time can be recov-
ered in the time domain as analytical expressions by the method of |east squares. Considering
the typical shape of strain curves for viscoelastic materias, a curve fit using Prony seriesis
convenient

611(%1,t> = €0(l’1> + ZlAm(SCl)

1 — exp (—%)} (10)

Replacing this relation and the expression for ¢(¢) given by Eq. (6) into Eq. (3) gives after
integration an expression similar to Eq. (10) for the measured o, and for the unknown ¢,,
and 7,,. Thesealow ¢, ¢, and 7, for n = 1 to N to be determined by least square method.
This protocol eliminates the necessity of calculating » from ¢ (or vice versa) by imposing
an extralayer of approximate fast LT or FT approximate numerical inversion schemes. This



Table 1 - Definitions of Characteristic Times

TIME DEFINITION
to beginning of relaxationwhen 1 — E(t)/Ey < &, fort > tg
t end of risetimewhen F'(t) = F, fort > t;
to = L/co time when wavereaches x; = L fromz; =0
tr fully relaxed timewhen 1 — E(t)/Ey < € fort > tg

t1 <ty <tgr and tr <tyOrtrp > ity
Note: ¢, 11,12 and tp are independent of each other
and where ¢, and €, eachare < 1

point will be amplified and discussed in detail in a subsequent section. Care must, of course,
be exercised to useidentical IV and 7,, values for both ¢ and ) determinations.

In order to simplify the determinations of the unknowns and to linearize Eq. (10), one can as-
sume a set of characteristic values for 7,,, such as for instance 7,, = 10™. Such prescribed 7,
are not their proper physical values corresponding to real relaxation times. Nor do the ¢,, or
1, coefficients thus obtained represent physical values including the possibility of someindi-
vidual negative signs, unlessthe 7,, are adjusted by trial and error. However, since in general
oneisonly interested in the entire function ¢(t) or ¢(t) and not its detailed individual parts,
the present approach is ideally suited to determine relaxation and/or creep functions in toto.
Anidentical procedure with the same experimental data can again be used to obtain creep and
relaxation functions ¢ and ¢» from Egs. (3) or (4). The recent work by Bradshaw & Brinson
(1997) presents a more inclusive approach for the determination of compliances or moduli,
since it guarantees proper detailed coefficient values including their algebraic signs.

If shear is generated through torsion with the same force F' (Ravi-Chandar 1997), then the
torque Mr(t) = eF(t) (where e isamoment arm) obeys the same time definitions as F'(t).
The torque and strains (rotational angles) can be measured experimentally. Using identical
analytical formulations to those above for normal stresses and strains above, one can find the
shear relaxation and creep functions ¢, and ¢, (Beldica& Hilton 1999). Bulk relaxation func-
tions can then be calculated from Eq. (5) or through individual volumetric experiments.

Bland (1960) has analyzed the 1-D impact problem of an isotropic homogeneous viscoel astic
bar taking into account inertia and wave effects. Such analyses and experiments are an ex-
cellent vehicle for establishing correct values for the instantaneous el astic modulus £, since
the latter is directly related to the readily measurable propagation velocity of the viscoelastic
wave.

When considering dynamic behavior, an additional time parameter comes into play, namely
t5 the time for longitudinal waves to travel from their point of originat z; = 0tox; = L
and be reflected. The wave speed ¢ is elastic, however the end force is applied and whatever
the linear viscoelastic properties £(¢) might be provided only that they exhibit instantaneous

linear elastic responses. Under such conditionsitisgivenby ¢, = L/c, = Ly/p/ E,, with p the
density of the viscoelastic material. (See Table 1 for definitions of the various characteristic
times.)

The governing PDE for the dynamic longitudinal displacement u,(x1,t) in an isotropic ho-
mogeneous linear viscoelastic materia is

9 t~ 2 /
% :cg/E(t_tf)Mdt/ w1 e(0,L) te(0,00)  (11)
0

with E(t) = Ey E(t) and 1 < E(t) < E,/FEy. Inthe LT space this PDE reduces to



= 0%y (x4,
PPu(enp) = E(p) ———%575—22 (12)
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Bland (1960) analyzed a rod with an impact load of —f()é(t) a r; = L withafreeend at
21 = 0 and obtained the solution

o1 (zy,t) = —% R {7exp (zw [t — 1 pj(w)D dw} (13)

where I, is amplitude of the impact force per unit area.

In order to evaluate dynamic contributions to material property determinations, it is necessary
to formulate the analysis for the loading patterns of Egs. (1) and (2). First, it must be noted
that Case 1, the Heaviside step function, is not feasible under dynamic conditions because its
instantaneous load deployment presents a contradiction when inertiais taken into account. In
Case 2, the linear load buildup in time gives rise to discontinuous time derivatives and infi-
nite accelerationsat t = 0 and ¢t = t; and, therefore, is not acceptable dynamically. Case 3
provides a smooth load transition of F'(¢) from 0 to F;, with second derivatives of +.5(x /t;)?
att = 0 andt; respectively and is, therefore, reasonable physically and acceptable mathe-
matically, athough other functions with similar time rise characteristics may aso be defined.

The solution of Egs. (11) and (12) before reflection takes placeis

U (x1,p) = 7u [p,xl,cﬁ(p)} (14)
or
Uy (xy,p) = A(p) sinh [E(p) xl} + B(p) cosh [E(p) xl} (15)
with k(p) = % for 0<t<ty and 0<z;, <L
co VE(p)

where the functions f,, A and B are determined from boundary conditions and where

ep) = \p/Ep) =celp) co=1/p/Es  E(p) = EyE(p) (16)
i) = 1/E@) = T0)  with  1<&p) < Tuldo ()

The boundary conditions for Case 3 are

Holy [1 —cos(mt/ty)] 0<t<t
all(O,t) = (18)
o H(t —t) t>t
ui(L,t) = 0 0<t<oo (19

The 1-D governing relations (11) and (12) have a viscoelastic dynamic solutionint¢ > ¢, for
the above BC in the form of

= potn) T

o11(z1,p) = E(p) en(z1,p) = E(p) %27?)

cosh {E(p) xl] — tanh [E(p) L} sinh [E(p)xl]

Z(p) E(p)/Z(p)



where the /; and I, represent the LT integrals from 0 to ¢; and ¢; to co. Note that the func-
tions k£ and £ contain the as yet unknown material parameters, thus making a numerical LT
inversion of Eq. (20) impossible. Formally, it can be inverted analytically much more readily
asaFT by making use of relation (6)

o (xy,t) = i?ﬁ{/ﬁll(asl,w) exp (1wt) dw} (21)

0

The inversion (21) cannot be carried out analytically because of the complexity of EQ. (20),
integration by the convolution theorem cannot aso be performed without prior knowledge of
material properties. However, the results of these dynamic experiments serve to determine
uniquely and accurately the value of the elastic modulus E,, and to check material property
values determined by quasi-static experiments. (For details see Beldica & Hilton 1999.)

NUMERICAL SIMULATIONS AND DISCUSSION OF RESULTS

L oading protocolsand their relation to creep and relaxation functions are shownin Figs. 1 and
2. Asdiscussed before, the loading pattern and especially the time needed for the load (stress)
to reach steady state conditionsis reflected on the accuracy with which the material character-
istics are determined. To exemplify this, a creep function was assumed and the corresponding
strain curves were determined for the load cases 1, 2 and 3. Next the reference characteristic
curve was shifted to the left, as would happen with temperature and/or moisture content in-
crease. Since load case 1 represents an ideal situation, the shift does not affect the shape of
slope of the strain curve (Fig. 3). For cases 2 and 3 the strain curves are altered if the stresses
intercept the modulus curves after the materia has started creeping (Fig. 4). It isworth em-
phasizing that a given load rate can be qualified as too slow not by the value of ¢, but by the
relative position of ¢, to the creep function.

The next set of graphs present the creep functions determined by solving Eq. (9) for a given
load case and different values of theloading timet;. For illustration purposesthe strain curves
were established assuming that the material characteristics are known. The results obtained
following the proposed procedure were compared to this reference curve. Timest; were cho-
sen here by evaluating the increase in (¢, ) compared to . Since the values ¢, are not sig-
nificant on their own, they will beidentified on the plots by therelativeincreasein ¢(t;) from

Yo-

Figs. 5 and 6 represent creep curves obtained by assuming that the loading conforms to an
ideal situation, i.e. by replacing f(¢t) = H(t) inEq. (9). If the strain values used when solving
the system of equations correspond indeed to case 1, the creep curve is recovered with good
accuracy (lessthan 0.5% error for N = 33 termsin Prony series). However, if amorerealistic
situation is considered (case 2 and 3), the material characteristics are determined with some
error depending on ¢;. In Fig. 5 the strains were obtained from load case 2 and al the points
t < t; were left out of the computation. As expected, the largest deviation appears in the
values of 1y. Almost identical results were obtained using strains corresponding to load case
3 (Fig. 6).

For the next set of computations, the Prony coefficients were determined by replacing f(t) =
t/t1 in Eq. (9). If al pointson the strain curve are used for the computation (including ¢ < ¢;)
then the creep curveisdetermined very accurately if the strain correspondsto the sameloading
situation (Fig. 7). If thisis not the case the algorithm breaks. A more conservative approach
in which only the points¢ > ¢; are taken into account produces good results not only for the
correct loading case, but also for similar loading patterns (Figs. 8 and 9). It isimportant that
thetimet, used for the least square method is the same as the one encountered in the loading
pattern. Overestimating ¢; will lead to larger values for v(¢) as shown in the limit in Fig. 9
where the strains were obtained from load case 1. Asanote of caution, for loading rates that
go well into the creep portion of the characteristic curve the linearized least square algorithm
can lead to badly scaled or closeto singular matrices. This can be circumvented by increasing
the number of termsin the Prony series and adjusting the set of characteristictimes,,. Fig. 10
issimilar to 5 except for different loading simulations, but exhibiting ssimilar patterns.



Figs. 11 and 12 depict the results of the time domain relaxation function determination from
the above described creep data. As before the relative errors are not caused by the used pro-
tocols but are due to the long ¢; loading times.

CONCLUSIONS

It is shown that loading patterns distinctly affect the determination of viscoelastic material
property parameters, leading to possible erroneous or misleading characterizations. It isfur-
ther demonstrated that it is possible to determine rel axation and creep functionsin the time do-
main from identical test data, thus eliminating the need for approximate or numerical Laplace
transform inversions and their inherent inaccuracies, which affect exact characterization de-
terminations.
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