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SUMMARY: Thermoset resins are used as constituents in fiber reinforced polymeric composites and
as such the ability to characterize and describe their cure behavior is vital to numerical simulations of
composite manufacturing. This study uses differential scanning calorimetry (DSC) to investigate two
different diglycidyl ether of bisphenol A epoxy systems each cured with two different
polyoxypropyleneamines--a diamine and triamine. The objective is to report the cure kinetic model
parameters and discuss the implications of variations in cure system specification to the results. The
autocatalytic cure model employed shows excellent agreement with the experimental results at the low
and middle ranges of degree of conversion.
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INTRODUCTION

In order to optimize composite manufacturing and produce quality composites, numerical simulations
have been developed to predict temperature and degree of cure during composite manufacturing. These
simulations rely on the use of the energy equation, which contains a heat generation term that describes
the exothermic chemical reaction of the thermoset resin. Historically, both empirical formulations that are
derived from differential scanning calorimetry (DSC) and mechanistic models that are based on
concentrations of reactive groups have been used to characterize the cure kinetic response. The
mechanistic models are much more descriptive in a physical sense because they relate the rate of reaction
to the reactive species and the stages of reaction, whereas the phenomenalogical models use algebraic
manipulations and curve fitting to obtain relatively simple mathematical forms, with no consistent patterns
or explanations for changes in any of the parameters. It is the empirically based, phenomenological
models that have wide appeal to the composite process modeling community as the resulting expressions
are ideally suited to implementation in finite difference and finite element codes.



as autocatalytic or n -order reactions.

This investigation focuses on the cure kinetic model characterization of a diglycidyl ether of bisphenol
A (DGEBA) epoxy by employing the appropriate empirical form for an autocatalytic resin system [3-6].
The overall goal is to determine the cure kinetic parameters of four epoxy/curative combinations by using
differential scanning calorimetry and to discuss the sensitivity of the response to variations in the model
parameters.

CURE KINETIC CHARACTERIZATION

Model

The energy equation, used to describe the cure stage of composites, contains a term that is related to
the heat generated from the chemical reaction. Specifically, heat generation is directly proportional to
the rate of degree of cure. The degree of cure or extent of reaction, � is a measure of the crosslinks such
that it ranges from zero (no crosslinks) to one (fully crosslinked). For autocatalytic epoxy-amine systems,

the rate of reaction up to the point where the reaction becomes diffusion controlled is described by
where B is the stochiometric ratio, i.e., the ratio of amine equivalents to the epoxide equivalents,  and

K1 and K2 are Arrhenius-type equations
where E is activation energy, A is a pre-exponential constant, R is the universal gas constant and T is
temperature.

Experimental Procedure

One of the most commonly employed techniques for gathering data for cure kinetic characterization is
differential scanning calorimetry (DSC). Briefly, DSC measures the heat flow into (endothermic) and out
of (exothermic) a small uncured sample. Implicit in the use of this method to describe the rate of cure
is the assumption that the degree of cure at any time is proportional to the cumulative heat evolved up
until that time. A typical output from the DSC measurements of heat flow over time is shown in Fig. 1.

The  area bounded by the curve and the baseline at any given time is the cumulative heat,
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where dQ/dt is the heat flow per unit mass. In cases where the sample undergoes complete conversion,
such as in dynamic (nonisothermal) scanning through a large temperature range, the bounded area
represents the maximum heat evolved for that system, and is called the heat of reaction, HR. Based on

the total heat evolved, the degree of cure α at any given time can be determined according to

Furthermore, the rate of cure during the process can be computed using
Using the data from the DSC results and equating Eqn 5 and Eqn 1, the various cure parameters can
be determined for each resin system.

Materials

For this study, the epoxy resin systems consist of diglicidyl ether of bisphenol A (DER 332 and DER
383; Dow Chemical) with di-functional and tri-functional amine curatives (Jeffamine D-230 and
Jeffamine T-403; Huntsman). The samples were mixed based on 1:1 stoiciometry using the amine
equivalent weights and epoxy equivalent weights in Table 1. Small batches (less than 500 mg) were
mixed separately for each run to reduce the effects of conversion prior to the DSC testing.  Specimens
were taken from the batches and ranged in sample size from 8 to12 mg.

.
H

H
 = 

R

α

.
dt
dQ

H

1
 = 

dt
d

R

α



DER 383 181

Jeffamine D-230 60Amine equivalent weight

Jeffamine T-403 81

Both dynamic (nonisothermal) and isothermal scans were performed using DSC. For each resin/curative
combination, a minimum of five samples were tested dynamically and two samples were tested under
the same isothermal condition. In the case of the dynamic tests, each sample was exposed to the
following procedure: (1) held at 323K for one minute before ramping to 483K at 10K/min, (2) cooled
to 303K at 100K/min and (3) heated again at 20K/min to 483K. The last step verifies that no other
reactions occurred. The isothermal scans were used to evaluate the effect of temperature on the rate and
extent of reaction. Samples were held at a prescribed temperature for 120 minutes, cooled to 303K at
40K/min, held for 1 minute at 303K, then heated to 483K at 10K/min. The last step provides the means
to determine the residual extent of reaction when the sample does not reach full conversion at the
isothermal temperature.

ANALYSIS AND DISCUSSION

Cure Kinetic Parameters

The cure kinetic parameters obtained from the DSC testing and analysis are summarized in Table 2.
Comparisons of the theoretical and experimental results over the various temperature ranges are made
after the procedure for determining the cure kinetic parameters is outlined.

Table 2: Values of the cure kinetic parameters in Eqn 1 and Eqn 2

DOW DER 332 DOW DER 383

Jeffamine D-230
(100:35)

Jeffamine T-403
(100:47)

Jeffamine D-230
(100:35)

Jeffamine T-403
(100:47)

HR (J/g) 560±12 489±9 547±13 479±18

A1 (min-1) 6.00×106 6.98×1010 2.07×108 2.10×106

A2 (min-1) 5.00×1012 1.58×1010 2.01×1012 1.8×1012



HR. From the nonisothermal curve data (Fig. 1), the total heat flow was determined by using the
trapezoidal rule. Normalizing these results to the sample mass yielded the heats of reaction shown in
Table 2. The most pronounced distinction between the heat of reaction for different systems occurs when
comparing a resin cured with a diamine to the same resin cured with a triamine. The triamine cure of each
of the resins exhibits a significantly lower heat of reaction even though the  ratios of resin to curative in
each case were based on 1:1 stoichiometry.

The isothermal data is used to determine the cure kinetic parameters in Eqn 1 and Eqn 2. As described
in the previous section, isothermal DSC was performed on two samples at four temperatures for each
resin/curative combination. The temperature range selected resulted in samples that reached 30% to
95% conversion as determined by computing the cumulative heat evolved during the isothermal scan
using the same trapezoidal rule method mentioned above. In order to determine the cure kinetic
parameters, Eqn 1 is rewritten to obtain a linear form on the right side and to reflect the 1:1

stoichiometry, i.e., B=1.
The term on the left hand side is referred to as the reduced reaction rate. As noted by Sourour [3], the
reduced reaction rate is linear when plotted with respect to the degree of cure up to the time when the
reaction becomes diffusion controlled.
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A typical response for the four resin systems investigated is shown in Fig. 2. When lower temperatures
are being evaluated, the peak reduced reaction rate occurs at a lower degree of cure; however, the most
significant difference between the plots for different temperatures is a substantial decrease in slope as
the isothermal temperature is decreased. Since a different slope K2, and y-intercept K1, are obtained for
each isothermal temperature, the best exponential fit to the K vs 1/T plot results in the determination of
the activation energies and the pre-exponential constants as described by Eqn 2 and illustrated in Fig.
3.

Theoretical/Experimental Comparison

Fig. 4 is a typical comparison depicting the accuracy of the theoretical model to the data collected. Like
the other resin systems investigated, and consistent with the findings from other researchers, the models
are in excellent agreement except at low temperatures when the diffusion controlled reaction dominates.
Recall that the linear portion of the reduced reaction versus degree of cure plots is limiting and the linear
region decreases with decreasing temperature.

From Table 2, no trends can be observed for the cure kinetic parameters. Changes in either resin or
curative have a profound effect on the cure kinetic constants; however, they mean very little to the actual
response. The model constants are the result of curve fitting and while the activation energies are of the
appropriate order of magnitude, the manner in which they change for the different resins or curatives is



not physically significant. Consider Fig. 5 which shows the degree of cure as a function of time for three
of the four systems at 348K. The solid line represents the DER 383/D-230 system. The curve above
it is the same curative but the DER 332 resin, whereas the curve below it is the same resin but the T-403
curative. So while the cure constants differ dramatically, the overall behavior is similar.

One may get the impression from the previous observation that the response is not sensitive to changes
in the cure constants. Fig. 6 illustrates the high degree of sensitivity when activation energies are changed
by 5% and 10%. For each resin system, the sensitivity of  the pre-exponential and activation energy to
the degree of cure versus time response was investigated. In all cases, the activation energies were the
only parameters which exhibited a significant influence to response when they changed by as little as 5%.
Since numerical simulations are the intended final purpose of these models, this sensitivity to changes in
the cure constants is worth noting.

CONCLUSIONS

The four systems were modeled using an equation identified as appropriate for autocatalytic reactions.
Similar to other characterizations of DGEBA resins, the model is in excellent agreement with
experimental results until degrees of cure are reached where the chemical reaction becomes diffusion
dominated. While the four systems have drastically different cure constants, the responses at
temperatures from 313-363K were similar. This illustrates the disadvantage to these curve fitting
methods in that the cure constants are not associated with physical attributes and cannot be adjusted to
accommodate reasonable variations in the resin/curative combinations. 
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