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SUMMARY : We deal in this paper with a very classical problem in designing laminates : the
suppression of coupling between stretching and bending. We formulate a general method to
find a large number of solutions, which generalises some of the methods known up to day.
The governing equations are found with the help of the polar representation method for plane
tensors. A surprising result of the analysis performed is the existence of a very large number
of solutions, and the fact that the well known symmetric solutions are in reality a very
particular case.
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INTRODUCTION.

One of the problems in using anisotropic laminates is the well known phenomenon of the
coupling of bending and stretching effects : an arbitrary laminate has the property that
membrane stresses produce also flexural strains, and vice-versa. This is generally an undesired
effect for composite structures. Moreover, this coupling exists also for thermoelastic effects,
which is also of great importance, because laminates are often built up with prepreg layers
pressed under high temperature. So, if a coupled laminate is being produced, it will be
naturally curved after the fabrication phase.
All the designers of composite structures know that a sufficient condition to have uncoupled
laminates is the material and geometrical symmetry of the stacking sequence. Often, and not
correctly, this is believed  as a compulsory condition to have no coupling effects. Indeed, this
is wrong, as already shown in literature, for instance by Caprino & Crivelli-Visconti, [1],
Verchery & Vong, [2], Kandil & Verchery, [3]. These authors gave several counter-examples
of non symmetric uncoupled laminates.



Questions remain however:
i.  the question from theoreticians is : are there a necessary and sufficient condition or more

general sufficient conditions to have laminates with no coupling effects ?
ii.  from the point of view of the designer, how is it possible to find these laminates, or at least

enough of them to satisfy practical applications ?
iii.  from the point of view of the sceptical, are these non-symmetrical laminates really

uncoupled for their elastic and thermal expansion behaviour ?
The first, theoretical question of a necessary condition cannot receive presently a general
solution. It should be emphasised that this is an inverse problem of the classical laminated
plate theory, and, just like other inverse problems, no general methods are currently available
to attack it.
In the present study, we were able to find a large class of solutions for laminates made of
identical laminas with different orientations. This was made possible by using the polar
representation of plane tensors as developed by Verchery and co-authors (see Part 1). It is an
application to tensors of the complex methods, and has in tensor algebra the same efficiency
that these well known methods have in ordinary problems.
A very interesting property of our class of solutions is that the number of solutions is large
even for a rather small number of plies, and increases rapidly with the number of laminas. As
this number is much larger than the number of symmetrical stacking sequences, our solutions
enlarge very much the perspective for the designers, presently restricted by the symmetrical
stacking rule. Indeed, we show how the symmetric solution can be considered as a very
particular one, the rule being the non-symmetry. This gives a satisfactory answer to the second
question, for the designer.
We have manufactured some of such laminates, by hot-pressing. After processing, the
specimens were perfectly plane. When tested, they exhibited an uncoupled behaviour, as
predicted, which gives an excellent experimental assessment for our research. Is that a
satisfactory answer to sceptical ?

THE POLAR REPRESENTATION TECHNIQUE

The general stress-strain relationship for a single ply may be put under the classical form, [4],

σσσσ εεεε= Q ; (1)

it is well known that for the case of a plane stress state, tensors σσσσ and εεεε can be represented by
“vectors” with three components, and the fourth order tensor Q by a 3x3 matrix, which is
symmetrical.
The Classical Laminated Plate Theory (CLPT),  based upon the well known hypotheses of
Kirchhoff-Love, provides the behaviour for a plate obtained by superposing and bonding
together some plies:
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where N is the vector of membrane forces and M that of bending moments, while εεεε° and
χχχχ are respectively the vectors of middle plane strains and curvatures. A, B and D are
symmetric double tensors, and as apparent from equation (2), the tensor A describes the
membrane behaviour of the plate, while D is the flexural one ; the role played by tensor B is



quite different, and it does not exist in homogeneous plates : it takes into account for the
coupling between membrane and bending. It is evident by equation (2) that the presence of
membrane deformations, that is, of stretching and shearing of the middle plane, produces also,
and by itself, thanks to B, the existence of bending moments ; in the same manner, the fact
that the middle plane has some curvature produces the existence of in-plane forces. This is the
phenomenon of stretching-bending coupling. Generally, this effect is quite undesired by
composite designers.
According to the general scheme of Fig. 1, the tensors components of A, B and D are given,
for a N-plies laminate (N= 2p+1 if odd and N= 2p if even), by :
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a)                                                                                        b)
Figure 1: General sketch ; a) odd number of plies; b) even number of plies.

In calculating mechanical properties of  a laminate composed by anisotropic layers, the tensors
in equations (1) and (2) must be expressed in a rotated frame. In Cartesian co-ordinates, their
components vary according to a fourth-power law of the director cosines of the angles formed
by the new frame with the old one: in other words, this kind of operation gives rise to
algebraically complicated expressions.
The polar representation technique for plane tensors makes this kind of manipulation much
more easy to do. Verchery and his co-workers (see Part 1 and [2], [3], [6], [7], [8], [9] and
[10]) have developed  and used this polar representation, extending results such as given by
Tsai & Pagano [5] who had already transformed the classical rules for rotating components.
For what concern a fourth order tensor L, its six independent components are substituted by
other six quantities, T0, T1, R0, R1, Φ0 and Φ1 related to the Cartesian ones by the following
complex expressions:
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These four equations define the so-called polar components of the tensor L. The converses of
equations (4) are :
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In a rotation θ of the material, the four quantities T0, T1, R0 and R1 are invariant, as long as the
difference Φ0-Φ1, while the angles Φ0 and Φ1 are changed into Φ0+θ and Φ1+θ.
Moreover, it can be easily shown that for an isotropic material, it must be R0= R1= 0, for an
orthotropic one, in any axes, Φ0= Φ1+k π/4 and for square symmetry, R1= 0.
Evidently, equation (2) may be rewritten as a function of the polar components: it is
immediate to see that equations (3) are valid also for the polar components, and in the most
general case, for tensor B, the results are the following (analogous expressions can be
obtained for tensors A and D, see [10]):
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Herein the angles Φ0k
 and Φ1k

are the angles defined for the ply k by its own reference frame,
and δk is the angle that such frame forms with the global reference frame of the laminate. By
equations (5), the components of tensors A, B and D for the laminates may be obtained as
functions of the above final components T0, etc. The great advantage resides in the fact that if
the frame of reference for the laminate is rotated of an angle θ, it is sufficient to calculate the
above quantities for the angles Φ0k k+ −δ θ  and  Φ1k k+ −δ θ  to have the tensors in the
rotated frame.

UNCOUPLING CONDITIONS

A laminate is uncoupled when the presence of stretching strains does not provide bending
moments, and the middle plane curvatures do not give rise to in plane forces. Mathematically
speaking, a quick glance at equation (2) tells us that a laminate is uncoupled if and only if the
tensor B is the null tensor :

B = 0. (7)

Let us consider laminates composed by identical plies; this means that each ply is composed
of the same material, in the same original frame, and with the same thickness. In such a case,
equations (6) are considerably simplified, and it can be easily seen that :
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Hence, the uncoupling conditions become simply :
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These last can be rewritten as follows :
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where k*= 0 if N is odd, and k*= 1 if it is even. The coefficients bk are given by

b dd,  b   for N even.k k= = −k  for N o k2 1 (11)

These are the equations to solve in order to obtain uncoupled laminates composed of identical
plies. As it can be noticed, such a property does not depend upon the mechanical properties of
the single ply, as it was to be expected, since the plies are identical.
To identify a solution, it is necessary to fix the orientation of one ply, in order to prevent from
rigid rotations. In the following, we will consider that for the first ply from the bottom it is
αk = 0. Obviously, the trivial solution, that is the solution which gives the same orientation for
each ply in a laminate, exists for each N. However, the complete solution of system (10) for a
given N is not available. Nevertheless, a particular class of solutions is rather easy to be
found, once and for all, for each laminate : we will call such class the set of quasi-trivial
solutions of the problem of uncoupling.

QUASI-TRIVIAL UNCOUPLED LAMINATES

The coefficients bk are anti-symmetric about the middle plane. This fact suggests immediately
the well-known rule of symmetrical stacking sequences for uncoupled laminates : in that case,
equation (10) will be automatically satisfied, for any orientation of a symmetric pair of layers.
Indeed, this is a sufficient condition, but not a necessary one, and much more solutions can be
obtained using a similar approach : we have an uncoupled laminate each time that the sum of
the coefficients of the layers having the same orientation will be zero, and such a rule does not
apply exclusively to symmetric stacking sequences, making possible to find non-symmetric
laminates that satisfy this condition.
So a very general rule to find uncoupled laminate is well established, and the very important
feature is that it is not necessary at all to solve equations (10) to find solutions that satisfy this



rule. To recognise this circumstance, we will call quasi-trivial these solutions, and saturated
group a group of layers having the same orientation. It must be stressed out that for this kind
of solutions, the orientation of each saturated group is not defined ; so, a stacking sequence
formed by g saturated groups is in reality the collection of g-1 infinities of different uncoupled
laminates from a mechanical point of view.
It is quickly recognised that the maximum number of different saturated groups in a N-ply
laminate is E[(N+1)/2], where E denotes the integer part of the quotient. Moreover, it is worth
noticing that, due to the identical structure of equations in system (10), only one group of
coefficients bk must be considered to find quasi-trivial solutions. Another important feature is
that each saturated group of a g-groups solution is a subgroup of another saturated group of a
(g-1)-groups solution.
Basing upon the previous properties, we have built up an algorithm able to find all quasi-
trivial solutions for a given laminate.  In the following, each different saturated group in a
laminate will be labelled by a number, beginning from zero ; for instance, for a quasi-trivial
solution with four different orientations, each group is referenced by a number from 0 to 3.
Each sequence is ordered, in the sense that, proceeding from the bottom of the plate, the first
orientation is always labelled by 0, then the second by 1, the third by 2 and so on.
We have also introduced the concept of independent or pure solution : let us consider, for
instance, a solution of the kind [0 1 2 3 4 3 2 1 0] ; it is clear that solutions like [0 1 2 3 3 3 2
1 0], or [1 1 1 3 4 3 1 1 1] are a particular case of the first one, obtained by attributing to
different saturated groups the same orientation. So we will call pure or independent solution a
solution of the first type, which is characterised by the fact that it gives no rise to other
solutions with a larger number of saturated groups.
Thanks to the algorithm created, we have analysed up to 18-layers laminates, and the results
are summarised in Table 1, which details, for each number of layers, the number of pure
quasi-

Table 1: Quasi-trivial uncoupled pure solutions.

trivial solutions. The table starts with a seven plies laminate, because from three to six layers
only one symmetric independent solution is possible.
Some surprising results can be noticed : first of all, the very large number of solutions, rapidly
increasing with the number of layers. If independent solutions are considered, as in Table 1,
only one symmetric pure solution exists for each number of plies, that is, the sequence where
the orientation change at each layer. In fact, all the others symmetric solutions are a particular
case of this one. Under this point of view, hence, the symmetric solution is not the rule, but
the exception : it is apparent from Table 1, in fact, that the number of pure solutions rapidly
increases, and in each case only one of them is symmetric. The results are shown, as
histograms, in Fig. 2.

N. of plies 7 8 9 10 11 12 13 14 15 16 17 18

N. of sol. 2 2 4 5 11 15 41 57 174 275 1033 1639
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Figure 2: Number of independent solutions.

THERMALLY UNCOUPLED LAMINATES

The previous analysis concerns only mechanical effects due to application of external or body
forces, but not thermoelastic effects. It can be inferred from general symmetry consideration
that for such laminates thermal coupling vanishes when mechanical coupling vanishes.
However, for better understanding, we present hereafter a direct proof. To do this, we will
consider the presence of a thermal field acting upon the laminate, linearly varying through the
thickness. This is the real situation of a laminate constituted by plies of the same material,
subjected to a difference of temperature between the upper and the lower surface, once the
thermal flux is stationary. Two things must be remarked : the first one is the importance of
having plies with the same physical properties. This hypothesis has already been done in the
preceding part, but now it assumes a physical importance, whilst before it was only assumed
for simplicity, the theory being anyway perfectly valid also for plies of different materials. The
second one is that the assumed hypothesis are those used in the manufacturing process of
laminates, so they assume a fundamental importance in practice too.
Let us assume that the temperature τ varies across the thickness according to :

τ τ( )z
h

zo= + 2∆τ , (12)

where τ(z) is the value of the difference of temperature between the current state and the
reference one, for the level z ; τo is the value corresponding to middle plane, z = 0, and 2∆τ is
the difference of temperature between the two faces. Still remaining in the framework of plane
stress theory, the strains corresponding to a free thermal expansion are given by :

εεεε αααατ τ( )z
h

zo= +





2∆τ , (13)

where αααα is the tensor of thermal expansion coefficients of the layer. If εεεε is the total strain
tensor, the stresses are given by the equation :

( )σσσσ εεεε εεεε= −Q τ , (14)



and as already done we can obtain force and moment resultants by integrating through the
thickness. The generalised expression of equation (2) is so obtained in the following form :
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where R, S and V are three second order tensors describing thermal stresses for the laminate
in stretching, coupling and bending respectively. They are given by :
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In equation (16), we have indicated by ββββk the quantity

ββββ αααα= Q (17)

for the kth ply. It is evidently the components of a plane second order tensor. It is apparent that
a laminate is thermally uncoupled if and only if the tensor S is the null tensor. The analysis is
performed using again the polar representation of plane tensors. In the case of a second order
tensor, like  ββββ, the polar components are the following ones (see Part 1 or [11]) :
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In a rotation θ, T and R are invariant, while the angle Φ is changed into Φ+ θ. Naturally, by
equations (19),  the components of tensors R, S and V can be expressed as functions of T, R
and Φ. Once this done, it is easy to write down the uncoupling conditions for the thermal
characteristics in polar components, for laminates made of identical plies :
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Equation (20) corresponds perfectly to equation (92) ; this means that a quasi-trivial solution
for an uncoupled laminate is a solution also for what concerns the thermoelastic uncoupling. It
could be extended easily to linear hygroscopic behaviour, in the same way.

NUMERICAL EXAMPLES

As numerical examples of what is shown above, we have considered laminates made by 7
plies, with a non-symmetric stacking sequence [0  1  1  2  0  0  1 ], in which layers with the
same number have the same orientation. We have taken 0° for 0 and 2, 90° for 1. For the
material, we have considered two different possibilities, a boron-epoxy and a glass-epoxy
layer, with mechanical characteristics taken from [12], as summarised in Table 2. We have



performed also some experimental tests, which confirm the absolute absence of coupling ; the
results of these tests are detailed in Part 3.

Table 2: Thermoelastic properties of the single layer (from [12]).

E1 [MPa] E2 [MPa] ν12 G12 [MPa] α1 [°C-1] α2 [°C-1]
Boron-Epoxy 204000 18500 0.23 5590 6.1 10-6 30.3 10-6

Glass-Epoxy 38600 8270 0.26 4140 8.6 10-6 22.1 10-6

It is then an easy task to calculate the components of stiffness, Q, and compliance, S, tensors
in the material frame ; the results are shown in Table 3, along with the polar components of
the same tensors ; for the polar components, the capital letters have been reserved to stiffness
tensors.

Table 3: Tensorial components of the single ply.
a) stiffness tensor (in GPa).

Q11 Q12 Q16 Q22 Q26 Q66 T0 T1 R0 R1 Φ0 Φ1
Boron-Epoxy 204.9 4.27 0 18.59 0 5.59 29.67 29.01 24.08 23.30 0° 0°
Glass-Epoxy 39.16 2.18 0 8.39 0 4.14 7.47 6.49 3.33 3.85 0° 0°

b) compliance tensor (in Pa-1× 10-12).
S11 S12 S16 S22 S26 S66 t0 t1 r0 r1 ϕ0 ϕ1

Boron-Epoxy 4.90 -1.13 0 54.05 0 178.9 30.01 7.09 14.71 6.14 45° 90°
Glass-Epoxy 25.90 -6.73 0 120.9 0 241.5 50.23 16.67 10.15 11.87 45° 90°

For the laminate, the tensor components are shown in Table 4 ; here, we show both the
membrane and the bending behaviours. Remark that Q and S are the homogenised tensors,
that is, the tensors of an equivalent material, and relate stresses σσσσ to strains εεεε ; hence, they are
not the proper stiffness and compliance tensors of the plate, which relates N and M to εεεε° and
χχχχ. It must be remarked the fact that components  T0 and T1 do not change for the single ply
and the laminate ; this is typical of laminates made of identical layers. In the cases presented,
also R0 does not change, but this is particular to the present case, where angles Φ0 are always
zero and the laminate is orthotropic. In the Tables below, the Cartesian components of the
tensor have been determined at 0°, and naturally they change if the angle is changed ; on the
contrary, all the polar components do not change by rotation, as long as the difference Φ0-Φ1

or ϕ0-ϕ1.

Table 4: Tensorial components of the whole laminate.
a) stiffness tensor of membrane behaviour (in GPa).

Q11 Q12 Q16 Q22 Q26 Q66 T0 T1 R0 R1 Φ0 Φ1
Boron-Epoxy 125.1 4.27 0 98.47 0 5.59 29.67 29.01 24.08 3.33 0° 0°
Glass-Epoxy 25.98 2.18 0 21.58 0 4.14 7.47 6.49 3.33 0.55 0° 0°

b) compliance tensor of membrane behaviour (in Pa-1× 10-12).
S11 S12 S16 S22 S26 S66 t0 t1 r0 r1 ϕ0 ϕ1

Boron-Epoxy 8.00 -0.35 0 10.17 0 178.9 24.72 2.18 20.00 0.27 45° 90°
Glass-Epoxy 38.82 -3.92 0 46.73 0 241.5 41.8 9.71 18.51 0.98 45° 90°

c) stiffness tensor of bending behaviour (in GPa).
Q11 Q12 Q16 Q22 Q26 Q66 T0 T1 R0 R1 Φ0 Φ1

Boron-Epoxy 112.1 4.27 0 111.5 0 5.59 29.67 29.01 24.08 0.07 0° 0°



Glass-Epoxy 23.82 2.18 0 23.73 0 4.14 7.47 6.49 3.33 0.01 0° 0°

d) compliance tensor of bending behaviour (in Pa-1× 10-12).
S11 S12 S16 S22 S26 S66 t0 t1 r0 r1 ϕ0 ϕ1

Boron-Epoxy 8.94 -0.34 0 8.98 0 178.9 24.68 2.15 20.03 0.08 45° 90°
Glass-Epoxy 42.33 -3.89 0 42.49 0 241.5 41.8 9.63 18.62 0.31 45° 90°

CONCLUSIONS

We have given a general rule to find a particular class of solution to the problem of finding an
uncoupled laminate. By means of this rule, we have been able to find a large number of
different stacking sequences, most of which are totally non-symmetric. Indeed, we have
shown that each symmetric solution is a particular case of only one solution for each laminate,
while the number of independent non-symmetric solutions is much larger.

REFERENCES

1. Caprino C., Crivelli-Visconti I.: A note on specially orthotropic laminates. Journal of
Composite Materials, v. 16, no. 5, pp. 395-399, 1982.
2. Verchery G., Vong T. S.: Une méthode d’aide graphique à la conception des séquences
d’empilement dans les stratifiés. Comptes rendus de JNC 5, pp. 267-280, 1986 (in French).
3. Kandil N., Verchery G.: New methods of design for stacking sequences of laminates.
Proceedings of Computer Aided Design in composite Materials 88, Southampton, 1988.
4. Jones R. M. : Mechanics of Composite Materials. Taylor & Francis, USA, 1975.
5. Tsai S. W., Pagano, N. J.: Composite Materials Workshop. Eds. S. W. Tsai et al.,
Technomic, 1968.
6. Verchery G. : Invariants of fourth rank tensors with the symmetry of the elasticity
tensors. Proceedings of the Euromech Colloquium 115, pp. 93-104.Villard-de-Lans, 1979.
7. Kandil N., Verchery G.: Nouvelles méthodes de conception des empilements des
stratifiés. Comptes rendus de JNC 6, pp. 891-902, 1988 (in French).
8. Kandil N., Verchery G.: Some new developments in the design of stacking sequences
of laminates. Proceedings of ICCM 7, Canton, China, 1989.
9. Verchery G.: Designing with anisotropy. Textile Composites in Building Construction,
part 3, pp. 29-42, Pluralis, Paris, 1990.
10. Vannucci P., Gong X. J., Verchery G.: Détermination de stratifiés quasi-homogènes
par l’approche polaire. Comptes rendus de JNC 11, 1998 (in French).
11.  Kandil N., Verchery G.: Design of stacking sequences of laminated plates for
thermoelastic effects. CADCOMP 90, Composite Materials: Design and Analysis.
Proceedings of the 2nd Int. Conf. On Computer Aided Design in Composite Materials
Technology, Brussels 25-27 April 1990. Ed. W. P. De Wilde & W. R. Blain. Computational
Mechanics Publications, Southampton, pp. 565-576.
12.  Tsai, S. W., Hahn, H. T.: Introduction to composite materials. Technomic, USA, 1980.


