
LOAD-RATIO DEPENDENCE ON
FATIGUE LIFE OF COMPOSITES

Joakim Schön 1 and Anders F. Blom 1, 2

1 Structures Department, The Aeronautical Research Institute of Sweden
Box 11021, SE-161 11 Bromma, Sweden

2 Department of Aeronautics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

SUMMARY:
A model for predicting the fatigue life of composites at different load ratios have been
developed. The basic assumption of the model is that the fatigue life of a specimen is
governed by delamination growth. The model is based on calculation of delamination growth
by integration of Pari’s law. It is assumed that fracture for different load ratios, but with the
same peak-load magnitude, will occur at the same delamination length. In addition, it is
assumed that the energy release rate does not vary with delamination length. The model is able
to predict the fatigue life for tension-tension, compression-compression, and tension-
compression fatigue. In comparison with experimental results for unnotched specimens the
model shows good agreement. Due to the large exponent in Pari’s law for composites the
model is sensitive to errors in the parameters used.
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INTRODUCTION

Different composite structures in applications such as aircraft are often subjected to spectrum
fatigue loading with different average load ratios, R = σmin

σ max
. When characterizing the

material for such structures constant amplitude fatigue data of coupons at the specific R-
values are often used. This results in a large number of fatigue test having to be run which is
expensive. Hence, there is a need to develop models for calculating the fatigue life of
composites at different R-values.

There are a large number of different models available for predicting fatigue life of
composites and some of them will be mentioned here. The model which probably is most well
known is Miner’s rule. It has been found that the model usually overestimates the fatigue life
of composites.[1][2] However, for some simple spectra it gives reasonable results.[3] In the
strength degradation model fatigue failure occurs when the residual strength has dropped to



the maximum stress of the fatigue loading.[4][5] By using the fatigue failure envelope method
to describe the fatigue behavior of composite laminates Rotem was able predict the fatigue life
at any load ratio.[6] The fatigue life of a composite can be estimated with fatigue failure
functions established on a laminate level.[7] Different R-values are then handled with the
Goodman correction approach. The model by Ratwani and Kan[8] models delamination
growth in a specimen. The delamination growth is predicted from interlaminar shear stresses.
They found that if the interlaminar shear stress is plotted against fatigue life data for different
R-values and specimens the results will collapse into a single scatter band.

The objective of this paper is to develop a model for predicting the fatigue life at different R-
values and then compare the model with experimental results. The model should be based on
material data which can be measured with simple test specimens.

MODEL

The basic assumption of the present model is that the fatigue life of a specimen is governed by
delamination growth. When the delaminations have grown to a critical size the specimen will
fail. This critical size is dependent on the peak load at failure. All other damage mechanisms,
for example matrix cracking and fiber failure, are assumed to be of secondary importance and
will only have a minor influence on the total life of the specimen. A consequence of this
assumption is that the fatigue life of a specimen can be estimated by calculating the
delamination growth rate in the specimen which is what the model in this paper will do. The
model will be applicable to all situations which fulfill the basic assumption above. Extensive
delamination growth has been observed for unnotched specimens fatigue loaded in tension-
tension and tension-compression.[9] Delamination growth of the critical delamination which
will cause failure is calculated by integrating Paris law. In fatigue of composites several
delaminations in thickness direction are often growing at the same time. But, it is reasonable
to assume that the delamination growth of the critical delamination will still be governed by
Paris law when the energy release rate of that delamination is used. From the global quantity
compliance of notched specimens it has been possible to obtain Paris law.[10] This would
suggest that Paris law also is valid on a global scale.

Recently, a model for predicting fatigue delamination growth rate has been developed.[11]
The model uses Paris law and predicts the growth rate for different R-values and mixed mode
ratios. It is based on the observation that the peak energy release rate can not be larger than the
critical quasi-static energy release rate and that the change in energy release rate ∆Gr  at the
threshold is independent on mixed mode ratio and load ratio. This gives two known values
from which the constants in Paris law can be calculated. This model will be the basis for
calculating the constants in Paris law.

Model for tension-tension and compression-compression fatigue

When the delamination growth rate is measured experimentally with test specimens, for
example DCB and ENF specimens, the R-value is defined such that -1≤R≤1. For other test
specimens such as notched and unnotched coupons there is a clear difference in loading
between, for example, R=0.1 and R=10. But, when energy release rates of delaminations in
those specimens are compared with those from simple test specimens there is no difference
between R=0.1 and R=10. Therefore, a new parameter Q is introduced and defined as

Q = R       if -1≤R≤1 (1)



or
Q =

1
R

      if R<-1 or R>1 (2)

To calculate the delamination length a N( ) as function of number of cycles in a specimen Paris
law is integrated as

a N( ) =
da
dNNi

N

∫ dN = D ∆G r[ ]
Ni

N

∫
n

dN (3)

where N is number of cycles, Ni is number of cycles at which a delamination is initiated, D
and n are constants in Paris law, and ∆Gr  is the range of change in energy release rate. The
difficulty is to determine ∆Gr . It is assumed that the energy release rate as a function of crack
length G a( )for the critical delamination of the specimen has been calculated at an applied
load Pref . The energy release rate at an applied load P is then

G P a( ) = G a( ) P2

Pref
2 (4)

For the case Q≥0 the range of change in energy release rate can now be given as

∆Gr = GP max a( )− GP min a( ) =
G a( )
Pref

2
Pmax

2 − Pmin
2[ ] (5)

where Pmax and Pmin  are maximum and minimum applied force magnitude. Force magnitude is
used since it will make it possible to treat tension-tension and compression-compression
loading in the same way in the following derivation. The Q-value is related to the applied
force magnitude as

Q =
Pmin

Pmax
(6)

Substitution of Eqn 6 into Eqn 5 gives

∆Gr = G a( )Pmax
2

Pref
2 1 − Q2[ ] (7)

Substitution of Eqn 7 into Eqn 3 gives the delamination length as

a N( ) = D
Pmax

2

Pref
2 1− Q2[ ] 

  
 

 
  
 

n

G a( )[ ]
Ni

N

∫
n

dN (8)

Consider now two specimens subjected to constant amplitude fatigue loading at two different
Q-values, Q1 and Q2. The fatigue loading is either compression-compression on both
specimens or tension-tension on both specimens with Pmax  equal for both specimens. It is then
reasonable to assume that both specimens will break when the delamination has grown to a



critical size ac, which is equal for both specimens, since Pmax  is equal for both specimens. This
gives

ac ,Q1 N f 1( )= ac ,Q2 N f 2( ) (9)

where Nf1 and Nf2 is number of cycles at failure for the specimens loaded at Q1 and Q2,
respectively. Substitution of Eqn 8 into Eqn 9 gives

D1

Pmax
2

Pref
2 1 − Q1

2[ ] 
  
 

 
  
 

n1

G a( )[ ]
Ni

Nf 1

∫
n1

dN = D2

Pmax
2

Pref
2 1− Q2

2[ ] 
  
 

 
  
 

n2

G a( )[ ]
Ni

Nf 2

∫
n2

dN (10)

Assume that Ni is zero. That means a delamination will begin to grow from the first cycle or
after only a few cycles which can be neglected. Considering that some damage might be
present at the interface from specimen preparation this is not unrealistic. Also, assume that the
energy release rate of the critical delamination G a( ) is independent of length and do not
change mode ratio. For unnotched specimens with a delamination growing from the edge it
has been found that the energy release rate increases for short delamination lengths and then
remains constant for delamination lengths above 4 ply thicknesses.[12][13][14] The energy
release rate mode ratio also remains constant. For a notched specimens a FEM solution found
that the total energy release rate decreases slightly with increasing delamination length and the
mode ratio was fairly constant.[15] This makes the assumption reasonable for unnotched and
notched specimens. In the future it might be possible to obtain G a( ) numerically which would
make it possible to numerically integrate the delamination growth. The constants D are given
from[11]

D =

da
dN

 
  

 
  th

∆Gr, th( )n (11)

where da
dN

 
   

 
   th

 is the threshold delamination growth rate when da/dN versus ∆Gr  makes a

sharp corner, ∆Gr,th  is the threshold change in energy release rate at this point. Both da
dN

 
   

 
   th

and ∆Gr,th  are independent of Q-value and mixed mode ratio and as a result

D1

D2

= ∆Gr,th[ ]n2 −n1
(12)

Equation 10 now becomes

∆G r,th[ ]n2− n1 Pmax
2

Pref
2 1− Q1

2[ ] G a( )[ ] 
  
 

 
  
 

n1

N f 1 =
Pmax

2

Pref
2 1 − Q2

2[ ] G a( )[ ] 
  
 

 
  
 

n2

Nf 2 (13)

It has been observed for unnotched specimens that a fatigue threshold exists.[9] It is
reasonable to assume that the fatigue threshold is related to ∆Gr,th . Therefore, it is possible to
write



∆Gr,th = G a( )
Pth,1

2

Pref
2 1 − Q1

2[ ] (14)

where Pth ,1  is the maximum load magnitude at threshold for the specimen loaded at Q1.
Substitution into Eqn 13 gives

N f ,2 =
Pth ,1

Pmax

 


 
   

 


 
   

2 n2 −n1( )
1− Q1

2

1− Q2
2

 


 
  

 


 
  

n2

N f 1 (15)

This equation makes it possible to calculate the fatigue life at the load ration Q2 and maximum
load magnitude Pmax if the constant n in Paris law is known at the two load ratios.

Model for tension-compression fatigue

Now, it is possible to estimate the fatigue life for tension-tension and compression-
compression fatigue. But, if Q<0, tension-compression fatigue, the situation is more
complicated. Assume that the delamination crack is open during the compressive part of the
load cycle. This means that GI>0. During the tension part of the load cycle the crack will be
closed which means that GI=0. Therefore, the energy release rate of the delamination crack
during compressionGc a( ) will not be equal the corresponding G t a( ) for the tension part of the
load cycle. The objective of the following derivation is to find an expression similar to Eqn 15
for the fatigue life when Q<0 which should be based on fatigue lives for Q>0. Following the
previous derivation Eqn 5 need to be changed to

∆Gr = GPt a( )+ G Pc a( ) = Gt a( ) Pt
2

Pref
2 + Gc a( ) Pc

2

Pref
2 (16)

where subscript ”c” and ”t” stands for compressive and tensile loading. Assume that the
specimen will fail in compression with a delamination length ac Nf 3( ) after Nf3 cycles. The
specimens fails at the same delamination length as a specimen loaded in compression-
compression, Q1≥0, with the peak load magnitude Pc which fails after Nf1 cycles. This gives

ac Nf 3( )= ac ,Q1 Nf 1( ) (17)

If Eqn 16 is substituted into Eqn 3 and part of Eqn 10 is used then Eqn 17 can be written as

   D3
Pt

2
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2
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G t a( )[ ]
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∫
n3

dN + Pc
2
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= D1
Pc

2

Pref
2 1− Q1

2[ ] 
  
  

 
  
  

n1

Gc a( )[ ]
Ni

Nf 1

∫
n1

dN    (18)

where n3 and D3 are constants in Paris law for the Q<0 case studied. Now, assume that Ni is
zero and that both Gc a( ) and G t a( ) are independent of delamination length and that the
energy release rate ratio is independent of delamination length. Substitution of Eqns 11, 12
and 14 into 18 gives



N f 3 =
Pc

2

Pth ,1
2

 

 
 
 
 

 

 
 
 
 

n1−n3 1 − Q1
2[ ]n3 Nf 1

Pt
2

Pc
2

Gt a( )
Gc a( )

 
  
 

 
  
 

n3

+1
(19)

where Pth,1 is the threshold load magnitude at load ratio Q1. In order to continue it is necessary

to find an expression for 
Gt a( )
Gc a( ) . Consider a specimen loaded in compression-compression at

load ratio Q4 and one loaded in tension-tension at load ratio Q5 at the same load magnitude
Pmax,4. Following the technique used above it is assumed that failure in the specimens occur at
the same delamination length. This might not be correct in all situations since Gc a( ) is not
equal to G t a( ) and local buckling might occur in compression. Equations 9 and 10 now
becomes

D4

Pmax,4
2

Pref
2 1 − Q4

2[ ] 
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∫
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∫
n 5

dN (20)

Substitution of Eqns 12 and 14 into Eqn 20 gives
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Substitution into Eqn 19 gives
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An alternative to using Eqn 22 would be to run one test at Q<0 and then use Eqn 19 to

calculate 
Gt a( )
Gc a( ) . It would then be possible to calculate Nf3 for other negative Q-values. If

failure occurs in tension instead of in compression, which was assumed above, subscript ”c”
should be changed to ”t” and vice versa in equations above.

Comparison with experimental results

To compare the model with experimental results data from the work by Gathercole et al.[16]
are used. The data are for unnotched T800/5245 composites tested in fatigue at different R-
values, see Fig. 1. Before it is possible to use the model it is necessary to find the n-value in
Paris law for the different R-values. This can be done with the delamination growth model by

Schön[11] which require that the mix mode ratio and the parameters 
da
dN

 
   

 
   th

, 
da
dN

 
   

 
   c

, ∆Gr,th ,

and Gmax,c are known together with a quasi-static failure criteria for mixed mode delamination

growth. The parameter ∆Gr,th  is the change in energy release rate at which the da
dN

 
   

  
   

 versus



∆Gr  curve turns down. In this case this value is assumed to be 80 J/m2. The parameter
da
dN

 
   

 
   th

 is the delamination growth rate at which ∆Gr,th  is reached. In this case this is assumed

to be at 1E-6 mm/cycle. The parameter Gmax,c is the energy release rate at static failure. In this
case a linear failure criteria for the different mixed-mode ratios was used which some

experiments would suggest.[17] The parameter 
da
dN

 
   

 
   c

 is the delamination growth rate at

which static failure is reached. In this case it is assumed to occur at 0.1 mm/cycle. It is also
necessary to know the mixed mode ratio for the critical delamination in the specimens during
tensile and compressive loading. One way to estimate this is by considering the static fracture.
In tensile loading fracture occurred at 1.67 GPa and in compressive loading at -0.88 GPa. It is
assumed that fracture in both cases will be due to delamination growth. It is reasonable to
assume that during tensile loading the delaminations will be closed, GI=0, since the tensile
strength is higher than the compressive one. It is assumed that quasi-static delamination
growth will occur when GII+GIII=750 J/m2. During compressive loading there will be a mode I
fracture component together with mode II and III. It is assumed that the mode II and III
fracture components will be equal to that during tensile loading at a given load magnitude. A
linear mixed mode failure criteria is used together with GIC=215 J/m2.[17][18] This makes it

possible to calculate the mode I to mode II+III ratio as 
G I

G II + G III
= 1.20 . It is now possible to

calculate the n-value in Paris law for the different R-values used, see Table 1. For R=-0.3 and -
0.6 fracture is assumed to occur in tension when GI=0 and for R=-1.0 and -1.5 fracture is
assumed to occur in compression when all three fracture modes are present. That is the reason
for the n-value to be larger for R=-1.0 and -1.5 than for R=-0.3 and -0.6. These values are
similar to those in the literature.[19]

Table 1: Calculated n-values in Paris law.
R-value +0.5 +0.1 -0.3 -0.6 -1.0 -1.5 +10
n-value 5.90 5.17 4.76 4.08 5.43 5.97 6.64

It is now possible to compare the theoretical predictions with the experimental results. Using
Eqn. 15 and the fatigue results for R=0.1 (Q=0.1) at 1.3 and 1.4 GPa the fatigue lives are
predicted for R=0.5 (Q=0.5). As Pth,1 was 0.55 GPa used which was calculated from the static
tensile strength and GII+GIII=750 J/m2 together with ∆Gr,th =80 J/m2. The results can be seen

in Fig. 1. For the case of Q<0 two methods are possible for determining 
Gt a( )
Gc a( ) . Either it can

be determined from tension-tension and compression-compression fatigue results at the same
Pmax-value or from Q<0 and Q>0 fatigue data at the same Pmax-value and failure mode, tension
or compression failure. Since there is such a large difference between tensile and compressive
strength it is not possible to use the first method. There are no fatigue data at the same Pmax-
value. The second method is then used. Based on the fatigue curves it is reasonable to assume
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Fig. 1  Experimental [16] and predicted fatigue results

that for R=-1 and -1.5 the failure is compressive. The parameter Gt a( )
Gc a( )  was determined from

the R=-1 and R=10 curves at Pmax=0.7 GPa and Eqn. 19 with a Pth,1 of -0.368 which was

determined from quasi-static compressive strength. It was found that 
Gt a( )
Gc a( )=1.77. The fatigue

life for R=-1.5 (Q=0.67) was then calculated using Eqn. 19 and the results can be seen in Fig.
1. For the R-values -0.3 and -0.6 it is reasonable to assume that the failure mode is tensile.



After the subscripts ”c” and ”t” in Eqns 19 and 22 had been shifted the parameter 
Gc a( )
Gt a( )  was

determined from the R=-0.6 and R=0.1 curves at Pt=1.1 GPa. It was found that 
Gc a( )
Gt a( ) =17.2

which is quite different to what was found for R=-1. The predicted fatigue life for R=-0.3 can
be seen in Fig. 1. There are several possible sources of errors for the comparison with
experiments. One is the parameters used for calculating the n-value in Paris law for the
different R-values. Since the n-values are large a small error in n-value or in the other
parameters used to calculate the fatigue life will introduce a large error in predicted fatigue
life. This is a basic problem of delamination growth in composites. As tougher matrices are
developed the n-value will decrease and this problem might be less critical.

CONCLUSIONS

A model for predicting the fatigue life of composites at different R-values has been developed.
It can be used for tension-tension, compression-compression, and tension-compression
fatigue. In a comparison with experimental results the model provides good predictions.
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