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SUMMARY:   An analytical formulation is presented for the computation of scattering and
transmission by a non magnetic carbon-epoxy composite material, which is characterized by a
complex permittivity. This method employs a first-order state-vector differential equation
representation of Maxwell’s equations. The solution is given in terms of a 4x4 to transition
matrix relating the tangential field components at the input and output planes of the anisotropic
region. The complete diffraction problem is solved by combining impedance boundary conditions
at these interfaces with the transition matrix relationship.
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INTRODUCTION

Aircraft structures made of Carbon Fiber Reinforced Composites (CFRC) are sensitive to in
service impact damage. If the damage is of sufficient importance, strength and service durability
of the structure are degraded. The fact that size and location of the damage may only be
predictable by statistical means, which is leading to rather conservative designs.

Health Monitoring System (HMS) appear to be quite attractive for such a  monitoring, and in the
past ten years considerable work has indeed been conducted so as to develop optic fiber strain and
damage sensing techniques for composites, in parallel with investigations of compliance change,



acoustic emission and acoustic injection techniques. Such approaches involve using discrete
sensors, which are embedded in the composite laminate.

However, many of the difficulties that are associated with the use of such discrete sensors may be
overcome by adopting techniques which rely on changes in physical properties of the composite
as a consequence of a damage. A good candidate is the so-called electromagnetic technique which
is based on changes in permittivity and/or conductivity in the laminate to characterize the
damage.

Since 1996 ONERA has been developing such a technique in order to localize defects affecting
carbon/epoxy materials. In a first step, this effort has led to the realization of a probe which is
able to detect the main defects affecting a carbon/epoxy structure [1].In a second step the
development of an integrated system based on the same principle is in progress. But an
appropriate modelling of the electromagnetic behavior of multi-layer carbon/epoxy materials
should enable to optimize this method and to integrate a sensor network in structure in order to
design what would be an electromagnetic HMS. This modeling is considered herein, and as a first
step, limited to a structure without defects.

MODELING

Consider the electromagnetic problem in the case where plane waves are obliquely incident upon
the N-ply laminated carbon-epoxy composites as shown in Fig. 1. Each individual lamina is
regarded as a homogeneous and anisotropic sheet. Electrical parameters of the nth ply are
described by permeability µ0  and anisotropic complex permittivity εn . With respect to the
composite principal coordinates (Fig. 2), the permittivity tensor εn  can be expressed as :
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where εq is the permittivity, σq  is the conductivity, and ω  is the angular frequency (time-

dependence e j tω is dropped from now on).

Electromagnetic properties of a uniaxial dielectric material at  given point are determined in our
case by the fiber direction : on has ε / /  along the axis of the carbon fiber, and ε⊥  in the plane
perpendicular to this axis (Fig. 2).



Fig. 1 : Geometry of  N-ply laminated composites.

By introduction of a rectangular Cartesian coordinate system n0, y0, z0, the direction of the optical
axis can be described by the angle ϕ , and the permittivity tensor in this coordinate system is
represented under the form of a symmetric matrix :
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with the following elements :

[ ]ε
ε ε
ε ε ε

ε
ε ε ε εs

xx xy

yx yy

xz

yz
zs zx zy=









 =









 =,  ,  sz (2)

ε ϕ ε ϕ εxx = + ⊥cos ( ) sin ( )/ /
2 2  

ε ϕ ε ϕ εyy = + ⊥sin ( ) cos ( )/ /
2 2  

ε εzz = ⊥ (3)
ε ε ϕ ϕ ε εxy yx= = −⊥cos( ) sin( ) ( )/ /  

ε ε ε εxz yz zx zy= = = =0

N N-1 N-2

Z=Z0
=0

Z1 Z2 Z3 ZN-1 ZN

d1 d2 d3 dN

Reflected
Wave

Incident
Wave

γγγγ

γγγγ
γγγγ

Transmitted
Wave

1



Fig. 2 : Global coordinates and principal coordinates of laminated composites.

The electromagnetic field which develops in the plate satisfies the following equations.

The incident plane wave :

E r e I rinin in ik( ) exp( . )= 0 H r h I rinin in ik( ) exp( . )= 0 (4)

is impinging upon the plate from the free half-space z > 0 in the direction of the unit vector Iin,
which is specified by the Bragg angle γ and the azimuthal angle ϕ .

In the first step a single lamina is  considered. Maxwell’s equations are projected onto the plane
of the plate (x, y) and onto the z-axis, four equations are obtained :

∇ × =s iE    Hs zω µ0 (5)
∂
∂

ω µ
z

i sz E    H Es s z× = − ∇ ×0 (6)

and ∇ × = −s ziH    Es zω ε (7)
∂
∂

ω ε
z

i s sz H    E Hs s z× = − − ∇ × (8)

where ε εz = ⊥ .

x

y

z

0
z 0

n 0

I in

I r

ϕϕϕϕ
γγγγ

n = N

n = N - 1

n = 2

n = 1



After some transformations of Eqn 5, Eqn 6, Eqn 7 and Eqn 8 a system of two linear algebraic
equations obtained where the only unknowns are Es  and Hs .
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Some simple transformations allow to define the following matrix equation :
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where A  is a 4x4 matrix with the following elements :
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 where kx and ky are the horizontal components of the  wave vector. Vertical components of
waves vector of fields which are propagating in the lamina are the following eigenvalues of the
matrix A  [6] :
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k k k kz z x y2 4 0
2 2 2= − = − + +⊥µ ω ε   (12)

In Eqn 10, the quantities θ , ε / / , ε⊥  and the other elements of the matrix A  take constant values.
We can use Eqn 10 to establish the following connection between the values of the matrix
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Using the Hamilton-Kelly theorem [4, 5], an explicit expression is obtained for the transfer
matrix in the form of a finite sum of the four first powers of the matrix A , i.e. ,
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where I  is a 4x4 unitary matrix, and the coefficients σ1 , σ2 , σ 3  and σ4  are determined by the
matrix relation as follow:
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Now, the whole laminated composite can be considered multilayered anisotropic plate consisting
of a set of N uniform layers of a uniaxial dielectric material located between the planes z = 0 and
z = -h. Each layer is characterized by the main values of permittivity, the direction of the carbon
fibre and  the thickness. For convenience, these layers are numbered beginning with the lowest
( n = 1) and ending with the highest ( n N= ), which borders a free half-space. From the boundary
conditions for the electromagnetic field at the interfaces of adjacent layers (Es and Hs  should
remain continuous across each interface). The following relationship linking values of the matrix
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Found in this expression is the joint transfer matrix Ptot of the anisotropic plate, which is
calculated as the product of transfer matrices P1, P2 , … , PN , for the individual uniform layers –
the first, second, and so on up to the N-th layer,

P P P P Ptot N N= −. ..... .1 2 1 (16)



The transfer matrix Pi  for each uniform layer i = 1,2,…,N is calculated from Eqn 14.

Each field can be characterized by two components E ⊥ and H ⊥  which define the components of
the wave that are polarized perpendicularly and paralle to the plane of incidence.

The electromagnetic wave for z = 0  is the sum of the incident wave being E
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With Eqn. 16, the  analytical form forRij and Tij  (with  i = m, e and j=m, e ), is perfectly
determined.

CONCLUSIONS

An original analytical model of the electromagnetic behaviour of carbon epoxy multi-layered
materials has been elaborated. This model based on a matrix formulation, is easily programmable
on a PC computer, in Fortran language. The obtained analytical relationships are in very good
accordance with the partially numerical model elaborated in [7].

The experimental validation of this model is in progress. Comparison with measurement of
electric and magnetic fields performed on several specimens of carbon epoxy multi-layer plates,
illuminated with an electromagnetic plane wave are planned.

This model is part of studies concerning the integrated health monitoring [1]. It has been
developed/elaborated in order to detect and characterize the main defects present in carbon epoxy
multi-layer structures. These defects are for example delamination, fibre fracture or local burning.
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