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SUMMARY:: SiC-based-fiber-reinforced Ti aluminide (TiAl) composites whose
interfaces were modified by C, BN, W, and Mo coatings were prepared by thermal
decomposition of a hydrocarbon, of BCl; and NH3 and by sputtering. The interface
structure and composition were analyzed by scanning electron microscopy, electron
probe microanalysis and transmission electron microscopy. The tensile strength
properties of composites were tested using model TCM-50 and determined by Weibull
analysis. Results showed that the interface between the SiC-based fiber and TiAl matrix
was modified markedly by C, BN, W, and Mo coatings compared to non-coated SiC-
based-fiber-reinforced TiAl composites. C enrichment by coatings strongly affected
interface modification. Of the modified coatings used, W improved the stability of SiC-
based-fiber-reinforced TiAl composite interfaces the best, especially above 1200 K.
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INTRODUCTION

Ti aluminides feature high specific strength and heat resistance (1300 K), making them
potentially useful at 1000-1400 K in aeronautics and space applications [1]. Their
drawbacks of inadequate ductility and toughness are overcome by fiber reinforcement.
Since the intermetallic compound TiAl as Ti is chemically active, TiAl composites are
usually formed at comparatively low temperatures. Because the processing temperature
is generally >1300 K, reactions must be avoided at fiber/matrix interfaces, meaning that
interfaces must be modified. TiAl have been synthesized on heat-resistive fibers with
low oxygen content and appropriate adhesion by controlled sputtering [2-4]. We studied
optimum coating to improve SiC/TiAl composite interface properties of and discuss on
the mechanisms involved in improving composite tensile strength. Cracks generated by
coefficient of thermal expansion (CTE) mismatch is a significant problem in
composites, especially reinforced with extra-large diameter (120 x 10°® m) fibers. The
problem, however, will be solved by using small-diameter fibers such as polymer-
derived SiC.



EXPERIMENTS

We studies two types of polymer-derived SiC fiber, SiC and SiTiC (Table 1). The
surfaces of as-derived fibers were modified with C, BN, W, and Mo coatings, selected
to minimize the mismatch of the thermal expansion coefficient, high-temperature
interface reactivity and optimize interfacial bonding strength between the fiber and
matrix (Table 2).

Table 1: SiC-based fibers

Fiber Diameter | Oxygen content Fabrication
(10°m) (Ti content)
(mass%)
Si-C-O fiber 14 0.5 Polycarbosilane pyrolyzation
(SiC) (0)
Si-Ti-C-O fiber 11 5 Polytitanocarbosilane pyrolyzation
(SIiTIC) (2)

Table 2: Modification coatings of SiC and SiTiC fibers

Coating | Thickness Fabrication Temperature
(10°m) (K)
C 0.1 Hydrocarbon thermal decomposition 1000
BN 0.1 BCl; and NH3; decomposition 1100
W 0.5 Sputtering 300
Mo 0.5 Sputtering 300

TiAl 2 x 10° m thick was deposited on as-derived and modified fibers by RF
magnetronsputtering at an output of 200 W [2-4]. The coating and fracture morphology
of composites were observed using scanning electron microscopy (SEM) and
transmission electron spectroscopy (TEM)(300 kV). The tensile strength properties of
the single-fiber-reinforced TiAl composites were measured by using a tensile machine
model TCM-50 (NMB Co.). The tensile speed was 5 x 10* m/min. More than 20
specimens were applied for each. Weibull analysis was used to determine tensile
strength parameters such as mean and variation coefficients of single-fiber-reinforced
composites [2-6]. The interface composition of composites was determined using
electron probe microanalysis (EPMA) and energy-dispersive x-ray analysis
(EDX)(probe: 1nm).

RESULTS AND DISCUSSION

Cross-sections of single-fiber-reinforced TiAl composites fixed by epoxy resin were
polished or fractured and observed using SEM (Fig. 1), and showed a homogeneous
interface between the SiC fiber and TiAl matrix formed around SiC fiber coated with W
(Fig. 1(a)) and Mo (Fig. 1(b)). The TiAl matrix also formed homogeneously around SiC
fiber.
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Fig. 1: Cross-sectional morphologies of single-fiber-reinforced TiAl composites:
(@) SiIC/WITiAl and (b) SiC/Mo/TiAl.
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Fig.2: Tensile strength of single-SiC-fibler-reinforced TiAl composites, (above) and
SiTiC-reinforced TiAl composites, (below). m: modifier



The tensile strength of SiC- and SiTiC-fiber-reinforced TiAl composites changed with
increasing temperature (Fig. 2). Compared to modified fiber-reinforced TiAl
composites, the tensile strength of as-derived fiber-reinforced TiAl composites was
lower and decreased with increasing temperature, presumably because of the resistance
of C, BN, Mo, and W coatings to the interface into fibers [2, 3, 7]. It was found,
however, that composite tensile strength is influenced by sputtering power [2, 3]. C and
BN coatings markedly improved the strength of fiber-reinforced TiAl composites up to
1100-1200 K. This was increasingly conspicuous with increased sputtering power. C
and BN coatings act as weak-interface-modifiers for microcrack propagation and barrier
layers, inhibiting reactions at the fiber and TiAl interface. The tensile strength of BN-
coated SiC fiber-reinfoeced TiAl composites was higher than that of C-coated SiC fiber
reinforced TiAl composites after heat treatment at 1073 K for 2 hr in Ar. The tensile
strength of SiC-based-fiber-reinforced TiAl composites modified by refractory metal
coatings of W and Mo did not improve markedly up to 1100 K, but the deterioration
was inhibited above 1100 K. Fibers extracted with chemicals after heating showed less
deterioration at a low oxygen

content, but significant deterioration at a high oxygen content, indicating that
oxygen in fibers affected interface reactions. We found that the markedly higher
strength of C-coated SiC-based-fiber-reinforced TiAl in SiC fiber up to 1100 K, and
in SiTiC fiber up to 1200 K than that of W/C or W/BN double-coated SiC-based-
fiber-reinforced TiAl. The heat resistivity of SiTiC fiber containing a few percent
of Ti was almost the same as the SiC fiber having low oxygen content (0.5%).
Cross-sectional observation of BN-SIC fiber-reinforced and C-SiTiC fiber-reinforced
TiAl composites after heating (Fig. 3) showed that fiber/TiAl interfaces were
comparatively well defined and had no obvious difference from before heating except
that the C intensity decreased slightly (Fig. 4).

TEM observation [8, 9] to determine the advantages of C-coated-SiTiC reinforced TiAl
composites in detail (Fig. 5 and Fig. 6) showed a Ti-enriched layer at the interface
heated at 1200 K in Ar, indicating that controlling the reaction of Ti and coating
materials as a modifier at the interface is the key to improving the mechanical properties
of composites.
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Fig. 3: Cross section and fracture morphologies of modified-fiber-reinforced composites
(@) BN-SIiC/TiAl and (b) C-SiTiC/TiAl before heat treatment.
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Fig. 4: Interface composition of BN-SIC/TiAl and C-SiTiC/TiAl determined by EPMA

(a) before and (b) after heat treatment at 1073 K for 2 hr in Ar.

Fig. 5: TEM image of C-SiTiC/TiAl interface heated at 1073K for 2hr in Ar

CONCLUSION

C, BN, Mo, and W coatings are compatible with the SiC surface and
homogeneously coated the fiber surface. Interface reactions between the SiC fiber
and TiAl coating, are inhibited by homogeneous C, BN, Mo, and W coatings. C
enrichment in the interface greatly affects interface modification up to 1100-1200
K. Of the modified coatings we studied, W improves the stability of SiC-based-
fiber reinforced TiAl composites best at the temperature above 1200 K.
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Fig.6: EDX analysis at points (a) 1, (b) 2, (c) 3, and (d) 4 in Fig. 5.
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