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SUMMARY:  This paper proposes a new method to control the resonance of composite 
beam-plates with generally supported boundary conditions. Firstly, the mathematical model 
including the general type of boundary conditions has been formulated in terms of differential 
and algebraic equations (DAE). Under this formulation, the natural frequencies and mode 
functions of the generally supported beam-plates can be computed easily. The control strategy 
to suppress the resonance is then conducted from two approaches: proportional control and 
LQG control. Some numerical examples are presented to illustrate the proposed method. 
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INTRODUCTION 
 
Lee and Moon [1] proposed modal sensors and actuators that the electrodes of 
polyvinylidence fluoride layer are trimmed in shapes according to modal functions. In asmuch 
as beam modal functions depend on the boundary conditions of beam-plates, the beam 
functions are not convenient for general applications. Wang and Lin [2] proposed the Fourier 
series method in conjunction with Stokes transformation which allow one to account for 
general types of supporting conditions. This method has been successfully applied for 
vibration analysis of delaminated beam-plate [3] and static shape control of smart structure 
[4]. In the present study, we extend the use of Fourier sine series to represent the electrode 
profile functions of sensors and actuators for the resonance control of composite beam-plates 
with generally supported boundary conditions. The matrix representation is used to overcome 
the algebraic cumbersome arising from the boundary conditions.  
 
 

MATHEMATICAL MODEL 
 



The following assumptions are considered in the analysis.  
(1) The Bernoulli-Euler Beam theory including Kelvin-Voigt damping is used for the 

model.  
(2) Same voltages are applied on the upper and lower actuators with opposite signs to 

produce pure bending moment effect on the laminated beam-plate. 
(3) The electrode thickness of piezoelectric film is negligible. 
(4) All laminae with the same length L and width W are bonded together perfectly. 
(5) The adhesive thickness is negligible. 

 
Based on the assumptions, the governing equation of composite beam-plates bonded with 2Na 
laminated actuators and 2 Ns laminated sensors can be derived as follows: 
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where γ, D, and DIC  are the effective mass per unit length, bending stiffness, and Kelvin-
Voigt structural damping coefficient, respectively; )()3/2( 332
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which aE , 31d , at , uaz  and laz  are the Young's modulus, electrical strain coefficient, 

thickness,  and distances from the middle plane to the upper and lower surfaces of the a-th 
actuator, respectively; aV   and aR  are the applied voltage and electrode profile function of the 

a-th actuator; ),( txf  is the dynamic loading. The associated boundary conditions at x=0, and 
L are prescribed for 
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The output voltage sV  of the s-th sensor is given by 
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where )(xRs , 31k , 31g , and vC  are the corresponding electrode profile function, 

electromechanical coupling factor, piezoelectric stress constant, and capacitance, respectively; 

usz  and lsz  are the distances of the middle plane to the upper and lower surfaces. 

 
The deflection ),( txw  can be represented by a Fourier sine series as follows: 
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where Lmm /πα = , and N is the number of terms used in Fourier series to approximate the 

actual displacement. The detail relations for the w function and its derivatives expressed in 
terms of Fourier sine series accounting for its end values are presented in Wang and Lin [2]. 
The governing equation (Eqn 1) can be transformed into 
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which amR  are the Fourier sine coefficient of )(xRa  and )0(0 aa RR = , )(LRR aaL = ; mf  is the 

Fourier sine coefficient of ),( txf . Similarly, we can obtain the corresponding equations for 
the boundary conditions and the sensor equation. Since only finite terms (i.e. N) of Fourier 
sine series are used in real computation, we can rewrite the governing equation, sensor output 
and boundary conditions into the following matrix representation  
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with appropriate matrices E(singular matrix), A, B1, B2 and C. 
 
 

RESONANCE CONTROL 
 
Resonance is controlled by adjusting the free response of a beam-plate i.e. the feedback 
control is used to shift the natural frequencies. The undamped natural frequency ω is 
determined by  
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with the mode shape computed from the corresponding eigenvector of (E,A). Suppose all 
states in Eqn 5 are available for feedback, let v=0 into Eqn 5, and consider the following 
linear feedback control: 
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The closed loop system becomes 
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hence, the closed-loop undamped natural frequency cω  is determined by  

 
0)]Re[det( =−− KBAE 2cjω                                         (8) 

 
with the mode shape computed from the corresponding eigenvector of ),( KBAE 2+ . One 
mean of selecting the matrix K is using proportional control technique, i.e. we relate the 
actuators’ input voltages to the Fourier coefficients of the beam-plate deflection w  and 
velocity w  with appropriate weightings. On the other hand, we can select the matrix K by 
using optimal control approach. 
 
Optimal Control Approach 
 



The performance index to be minimized is given by 
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where the first term in the integrand corresponds to the state energy and the second term 
corresponds to the input energy. According to Katayama and Minamino [5], the optimal state 
feedback gain is given by 
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where 1U , 2U , 3U , 1V , and 2V  are the solutions of the following equations: 
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and W is an NN 22 ×  Jordan form with the stable eigenvalues of )
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 are defined by 
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RESULTS AND DISCUSSION 
 
Verification Test 
 
In order to verify the DAE formulation for dynamic response of flexible structures, an 
cantilever beam with 0=DIC is used as a test example. Table 1 shows the comparison 
between exact and computed values when 100 terms of Fourier Sine series is used: 
 

Table 1: Comparisons between the computed and exact values for  
the first five natural frequencies of a cantilever beam 

 

Modal frequency 1st 2nd 3rd 4th 5th 
Exact 3.5160153 22.034492 61.697214 120.90192 199.85953 
Computed(N=100) 3.5446256 22.215040 62.205935 121.90527 201.52885 

 
At the same time, the effect of different series expansion terms on natural frequencies is 
investigated. As shown in Fig. 1, the computation error for modal frequencies is proportional 
to 1/N, e.g. if we use 100 terms in sine expansion, the relative error is less than 1%. Fig. 2 
shows the effect of the number of sine expansion terms on the 2nd modal shape function.  
Similar result can also be obtained in analyzing the effect for modal shape functions, but more 



terms in sine expansion should be used if the accuracy of modal shape functions is required to 
be within 1% error. 
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Fig. 1: The effect of sine expansion terms on errors of the natural frequencies. 
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Fig. 2: The effect of sine expansion terms on the 2nd modal shape function. 
 
Design Example 
 
For illustrative purpose, we use a cantilever beam-plate bonded with single pair of sensors and 
single pair of actuators as our design example. The sensors are bounded directly to the beam-
plate and the actuators are bounded on the top of the sensors. The sine shape and uniform 



functions are used in the electrode profile for both sensors and actuators. In order to simplify 
our analysis, let 0=DIC . Some typical results are shown in Table 2. 
 

Table 2: Frequencies of cantilever beam-plate with different control approaches 
 

Uniform profile function Sine shape profile function 
Proportion Proportion Mode 

210=K  2103×=K  LQG 210=K  2103×=K  LQG 

1   3.616   3.722   3.970   3.651   3.757   4.097 
2 22.610 23.326 24.880 22.881 23.548 25.547 
3 63.206 65.316 69.670 64.072 65.938 71.535 

 
The LQG method produces a larger shift in natural frequencies. Although the Sine shape 
function provide better control effect than uniform function, but the improvement is not 
significant. 
 
 

CONCLUSION 
 
Fourier series method together with Stokes’ transformation is used to represent the dynamic 
response of flexible structures into the Differential-Algebraic Equations form (DAE). This 
approach gives us more flexibility to treat generally-supported type boundary conditions. 
Based on our method, the computation error for modal frequencies is proportional to 1/N, e.g. 
if we use 100 terms in sine expansion, the relative error is less than 1%. Similar result in 
modal shape function can be obtained, but more terms in sine expansion should be used to 
have the accuracy of 1% error. Resonance is controlled by adjusting the free response of a 
beam-plate i.e. the feedback control is used to shift the natural frequencies. A cantilever 
beam-plate bonded with a pair of sensors and a pair of actuators is considered for illustrative 
purpose. The sine shape profile is more effective than uniform profile function and the LQG 
control strategy can further enlarge the modal frequency shift. 
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