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SUMMARY: The dynamic stability of a composite beam is analyzed numerically considering
viscoelastic properties of the material. A cantilever beam made of unidirectional composites
under a follower force is taken for the analysis and the influence of the viscoelasticity on the
critical load is studied. Assuming the first order shear deformation, the equations of motion
are derived from the Hamilton’s principle and then the eigenvalue problem is formulated by
applying the finite element method wherein the solution is sought through the substitution
method.
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INTRODUCTION

Composite materials with polymeric matrices are being used to an increasing extent in
aerospace structures because of their efficient load carrying capabilities. However, polymeric
materials are known to exhibit viscoelastic response, especially at high temperature and
moisture, so polymer matrices when used in unidirectional laminates are expected to exhibit
strong viscoelastic effects [1]. In particular, properties transverse to the fibers and shear
properties are matrix controlled and show strong viscoelastic behavior. Because of the time
effects and the peculiar nature in which time enters as a destabilizing parameter, viscoelastic
stability problems and the time-dependent effects of materials on dynamic behavior have
become more and more important.
During the past decades, not a few stability analyses have been performed based on time
dependent materials. Stevens [2] investigated approximately some of the qualitative aspects of
the parametric excitation of a viscoelastic column subjected to harmonically varying axial
load. He showed that in some cases the instability regions are broadened significantly and
shifted toward lower values of the exciting frequencies, as the material becomes more
viscoelastic in nature. Plaut [3] studied the stability of a viscoelastic cantilever column
subjected to a retarded follower load at its free end, where the destabilizing effect of internal



damping and retardation was illustrated. Szyszkowski and Glockner [4] used the dynamic
approach to obtain an approximate closed-form expression for the viscoelastic critical load of
perfect columns made of linear three elements model materials. Vinogradov [5] presents a
theoretical study of the creep-buckling behavior of viscoelastic beam columns under general
loading conditions. The general solution is derived by means of the quasielastic method and it
is shown that with different loading conditions the magnitude of the axial compressive load
typically governs the creep-buckling behavior. Chandiramani et al. [6] dealt with an exact
approach to the dynamic stability of orthotropic shear deformable viscoelastic flat plates
subjected to in-plane uni/biaxial edge load. In this paper, the nature of instability, by flutter or
divergence, was recognized and the influence of various parameters on the analysis was
examined. Cederbaum et al. [7] analyzed the dynamic stability of viscoelastic laminated plates
under a harmonic in-plane excitation by utilizing the concept of Lyapunov exponents.
In the present paper, the dynamic stability of a cross-ply laminated composite cantilever beam
under a follower force is investigated numerically considering the viscoelasticity of
composite. The equations of motion for the problem are derived from the Hamilton’s principle
assuming the linear viscoelastic constitutive equations. The stability characteristics are studied
for beams with different configuration. And the intensity of instability is examined through
the time responses.

GOVERNING EQUATIONS

Fig.1 shows a composite cantilever beam under a follower force, where F, T denotes axis in
fiber and transverse direction and θk denotes orientation of k-th layer respectively. In the
theory of first order shear deformation and linear strain, the displacement field and
displacement-strain relationship is expressed respectively as,
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where u0(x,t), w0(x,t) represent the displacements at the neutral axis, ϕy(x,t) the rotation of a
line perpendicular to the neutral axis in z-x plane and ( ),a the partial derivative with respect to
a (a: x or z). For the constitutive equation, we will use the Boltzmann’s superposition
principle as linear viscoelastic theory. So the constitutive relations at k-th layer of a laminated
beam, with initial strains, can be written as follows [8],
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where Q tij
k ( )  is the time dependent modulus at k-th layer referred to xy coordinate, with

(3)



subscripts 1, 2, 4, 5 and 6 denoting xx, yy, yz, zx and xy respectively, and P21, P61, P45 are
Poisson effects[9] which are defined by,   
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Now, the equations of motion are derived from the extended Hamilton’s principle as in Ref
.10,
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where T is the kinetic energy, δU the virtual work by internal forces corresponding to the
elastic deformation energy, Wc the  work done by the conservative portion of the follower
force and δWnc the virtual work by the non-conservative portion of the follower force. They
can be expressed respectively as follows,
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where N is normal force resultant, M moment resultant, Q shear force resultant, ks shear
correction factor, α a  parameter that  indicates the direction of loading, A cross section area
and
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where ρ is density of the material.

Fig. 1: A composite cantilever beam subjected to a follower force



In the finite element analysis of beam, the in-plane displacement u0, deflection w, and normal
rotation ϕy can be represented by
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where u0
j, wj are displacements, ϕy

j is rotation at node j and Φj denotes the shape function at
node j. Substituting  Eqn 2, Eqn 3 and Eqn 8 into Eqn 5, one can obtain the following
equation in the matrix form,
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where x(t) is a m×1 global nodal displacement vector, M a m×m global mass matrix, K a m×m
time dependent global stiffness matrix and W is a m×m global stiffness matrix from the work
by the follower force.

METHOD OF ANALYSIS

In this paper, the time dependent relaxation moduli Q(t) in the principal material direction is
represented by the sum of exponentials, which is practically one of the widely used models for
approximation of the viscoelastic behavior of material. Hence, without considering the effects
of temperature and moisture they can be given as follows,
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where Q0 and Q∞ is the modulus at t=0, ∞ respectively, f(t) is time function which have unity
at t=0, αr denotes time constant and n number of time constants for Q. We assume that Q11 is
constant since it is generally controlled by fiber properties, and time function for Q12 is equal
to the one for Q22. Moreover, time function for Q44 is taken the same as that for Q55 and Q55 is
supposed to be equal to Q66 as in the Ref. 11. Thus relaxation moduli are as follows,
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Concerning the terms indicating Poisson effect, we discuss cases of cross ply laminated
composite beams for constant Poisson effect. Then, at k-th layer, they become:
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Now, the solution of Eqn 9 is sought in the following form as in the Ref. 12:
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where m is the degree of freedom and n is the number of distinct time constants in all
relaxation moduli, n1+n2 in this paper. Considering Eqn 11 for three-element solid model,
which retains only one exponential term, as each time function f1, f2 one obtains a set of
equations for a cross ply laminated beam with zero initial displacement by inserting Eqn 13
into Eqn 9 and performing convolution integral analytically,
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where the matrices with subscripts in Eqn 14 is associated with  the global stiffness matrix as
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Now we can formulate the eigenvalue problem from Eqn 14 by collecting the coefficient
matrices of  pj

n+2, pj
n+1, …, pj

0  respectively as follows,
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where A, B are 4m×4m matrices and q is a 4m×1 vector defined as in the Ref. 12. From
obtained eigenvalues and eigenvectors one can get coefficients cj, in Eqn 13 by solving the 4m
simultaneous equations consisting of Eqn 15 and zero initial displacement conditions. Then,
the time response can be calculated directly from Eqn 13 without numerical time integration
because the solution is presented in closed form.

NUMERICAL RESULTS AND DISCUSSION

In order to show the convergence of the present numerical procedure, numerical results for a
simple example are compared to available analytic solutions. Fig. 2 shows the viscoleastic
critical loads of a simply supported column under an constant axial force with viscoelastic
material property expressed in three parameter solid form, where Pe denotes Euler buckling
load with E1 as Young’s modulus. One can see that numerical results from the current
numerical analysis are in good agreement with the results in the Ref. 4.
The material properties used for sequential numerical simulation are tabulated in Table 1 and

Table 1. Material properties
Q11/Q0

22=29.3, Q11/Q0
12=74.6, Q11/Q0

44=169.6, Q11/Q0
55=130.7,

f1(∞)/f1(0)=0.3218, f2(∞)/f2(0)=0.3090, ks= 5/6



following non-dimensionalized parameters are introduced for simplysity,
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In Fig. 3, the eigenvalue curves of some lowest vibration modes are plotted against magnitude
of the follower force (α=1) for a [0/90/90/0] beam. When one solves Eqn 17, one gets a set of
eigenvalues that consists of 2m damped vibration modes and 2m pure real dissipation modes.
In this figure, dissipation modes are omitted for they have no affect on the stability The
ordinate Ω*

R/Ω*
I, the ratio of the real part to the imaginary part of the complex frequency,

denotes the intensity of instability as in the Ref. 13. When the value of the ratio is zero, the
system becomes neutrally stable and with the sign of the ratio changing it turns dynamically
unstable wherein the amplitude of the vibration is unbounded. As the magnitude of the
follower force is increased, instability occurs before the critical load predicted through elastic
analysis is reached. While the first vibration mode gets more stable, by the transition of the
second mode eigenvalue into the unstable region the system become unstable and it is
accompanied by the third and fourth mode in more increased load range. As one can see, the
curve indicating second vibration mode approaches the curve of elastic case asymptotically.
When the instability considering viscoelastic effect occurs, the intensity of instability is
weaker by far than that of the case without considering viscoelasticity and it grows up to the
level of elastic instability. So it appears useful to define the level of instability according to
the magnitude of Ω*

R/Ω*
I.

For parametric studies, the slenderness ratio and the length of the beam are taken to
investigate the effect of geometric conditions in given material properties. First, the effect of
the slenderness ratio on the non-dimensionalized critical load for a [0/90/90/0] beam is shown
in Fig. 4, where the solid line and the dashed line denote viscoelastic and elastic critical load
respectively. In small slenderness ratio region S<20 both non-dimensionalized critical loads
increase but when S>20 viscoelastic critical load decreases while elastic one remains
increasing. And in the region between the two critical loads, levels of the instability strength
are also divided into two groups, one increasing and the other decreasing. This means that the
slenderer the beam is, the larger the range of instability and the stronger the intensity of

Fig. 2: Viscoelastic critical load of a simply supported column under an axial force



instability becomes.
Fig. 5(a) shows the critical load dependence characteristics with respect to various stacking
sequences for elastic case, and Fig. 5(b) for viscoelastic case.  In both cases, the [0/90/90/0]
and [0/90/0/90] configurations seem to be more dependent on the slenderness ratio than the
[0/0/90/90] and [90/0/0/90] configurations.
Secondly, the effect of the length on the non-dimensional critical load of the [0/90/90/0] beam
is investigated in Fig. 6. When the elastic stability analysis is performed on this problem, the
slenderness ratio is the only geometric parameter that is incorporated in non-dimensionalized
governing equations. But, the viscoelastic stability analysis introduces one more geometric
parameter in the non-dimensional governing equations, length of the beam, considering that,
t*

1, t*
2 in Eqn 19 include the length of the beam as one of the factors. Therefore, one may deal

with the effect of the length independently of that of the slenderness ratio by examining the
stability characteristics according to the viscoelastic parameters t*

1, t*
2. The critical loads and

the intensity of instability dependence on the time constant t*
1 is shown in this figure. Though

it seems that t*
1 is taken as a independent variable apart from t*

2, it should be recognized that

Fig 3: Eigenvalue curves for a
beam subjected to a follower
force

Fig 4: Critical load dependence on the
slenderness ratio (Ω Ωn

R
n
I/ : Ο 1e-8, •

5e-8, ◊ 1e-7, ∆ 5e-7, ∇  1e-6 )

                                 (a)                                                                (b)

Fig. 5: Critical load dependence on the slenderness ratio
(a) elastic (b) viscoelastic ; Ο [0/90/90/0], ∗  [0/90/0/90], • [0/0/90/90], ◊ [90/0/0/90]



two viscoelastic parameters are in simultaneous consideration. For the length of the beam is
the common factor of them as is described. The length does not affect the critical load but
increment of the length causes the system to be in more unstable state by extending the
stronger instability range.
Finally, strength of the instability is studied through examining the time response of tip
deflection under dynamic disturbance for each instability level. Different from the elastic case,
even after the occurrence of the instability due to viscoelasticity, the structure can serve
without excessive deformation for a certain period safely because compared with the intensity
of the elastic instability, that of viscoelastic one is weaker by far. Such a safe service period
may be referred to as critical time. One may define this period, as the time required for the
response amplitude to become equal to the magnitude of the initial disturbance [4]. Fig. 7
shows the time responses of tip defection during the critical time when the beam is disturbed
laterally by velocity field in the shape of the first bending mode at different instability levels
(see Fig. 4). From this figure it may be noticed that there exists a period during which the
vibration is damped and then the response starts to grow and become unbounded as the non-
dimensionalized time T* tends to infinity. This phenomenon can be explained from Fig. 2 that
shows that the instability is caused mostly by the divergence of the second bending mode in

Fig. 6: Strength of the instability dependence on the length (
Ω*

R/Ω*
I : Ο 1e-8, • 5e-8, ◊1e-7, ∆ 5e-7, ∇  1e-6 )

              (a)                                              (b)                                              (c)

Fig. 8: Time response of the tip deflection at various levels of instability strength



contrast to the stabilization of the first bending mode. Because the first bending mode
dominates the vibration of the beam, following enough decrease of first bending mode the
unbounded response contributed to by the second bending mode appears. Thus a system that
seems to be stable initially can turn unstable after a finite time.

CONCLUSIONS

In this study, the stability behavior of a laminated cantilever beam subjected to a follower
force has been examined numerically considering the viscoelasticity of composite. The
following conclusions have been arrived at for the cases considered: (a) The effect of the
viscoelasticity reduces the critical load predicted through elastic analysis to viscoelastic
critical load lower than the elastic one. (b) As the slenderness ratio of the beam is increased
the non-dimensionalized magnitudes of the elastic critical load increases and that of the
viscoelastic one decreases. (c) The increment of the viscoelastic parameters or length, when
given material properties, leads to growth of the intensity of the instability though they do not
affect the critical load. (d) When the instability occurs, there exists a period when the
vibration is damped out due to the characteristics of the follower force.

REFERENCES

1. Shapery, R.A., “Viscoelastic Behavior and Analysis of Composite Materials”,
Composite Materials, Sendeckyj, G.P, Ed., Academic Press, New York, 1974, pp. 86-167.

2. Stevens, K.K., “On the Parametric Excitation of a Viscoelastic Column”, American
Institute of Aeronautics and Astronautics Journal, Vol. 4, 1966, pp. 2111-2116.

3. Plaut, R.H., “Instability of a Viscoelastic Cantilever Under a Follower Load”, Journal
of Applied Mechanics, No. 4, 1971, pp. 1044-1047.

4.   Szyszkowski, W. and Glockner, P.G., “The Stability of Viscoelastic Perfect Cloumns:
A Dynamic Approach”, International Journal of Solids and Structures, Vol. 21, No. 6, 1985,
pp. 545-559.

5. Vinogradov, A.M., “Buckling of Viscoelastic Beam Columns”, American Institute of
Aeronautics and Astronautics Journal, Vol. 25, No. 3, 1987, pp. 479-483.

6. Chandiramani, N.K., Librescu, L. and Aboudi, J., “The Theory of Orthotropic
Viscoelastic Shear Deformable Composite Flat Panels and their Dynamic Stability”,
International Journal of Solids and Structures, Vol. 25, No. 5, 1989, pp. 465-482.

7. Cederbaum, G., Aboudi J. and Elishakoff, I., “Dynamic Instability of Shear-
Deformable Viscoelastic Laminated Plates by Lyapunov Exponents”, International Journal of
Solids and Structures, Vol. 28, No. 3, 1991, pp. 317-327.

8. Yi, S. and Hilton, H.H., “Dynamic Finite Element Analysis of Viscoelastic Composite
Plates in the Time Domain”, International Journal for Numerical Methods in Engineering,
Vol. 37, 1994, pp. 4081-4096.

9. Chandrashekhara, K. and Bangera, K.M., “Free Vibration of Composite Beams Using
a Refined Shear Flexible Beam Element”, Computers and Structures, Vol. 43, No. 4, 1992,
pp. 719-727.



10. Chen, T.M., “The Hybrid Laplace Transform/Finite Element Method Applied to the
Quasi-Static and Dynamic Analysis of Viscoelastic Timoshenko Beams”, International
Journal for Numerical Methods in Engineering, Vol. 38, 1995, pp. 509-522.

11. Yi, S. and Hilton, H.H., “Nonlinear Thermo-Viscoelastic Analysis of Interlaminar
Stresses in Laminated Composites”, Journal of Applied Mechanics, Vol. 63, 1996, pp. 218-
224.

12. Muravyov, A. and Hutton, S.G., “Closed-Form Solutions and the Eigenvalue Problem
for Vibration of Viscoelastic Systems”, Journal of Applied Mechanics, Vol. 64, 1997, pp.
684-691.

13. Higuchi, K. and Dowell, E.H., “Effect of Structural Damping on Flutter of Plates with
a Follower Force”, American Institute of Aeronautics and Astronautics Journal,, Vol. 30, No.
3, 1992, pp. 820-825.


	GOVERNING EQUATIONS
	METHOD OF ANALYSIS
	NUMERICAL RESULTS AND DISCUSSION
	CONCLUSIONS
	REFERENCES

