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SUMMARY: Composite materials consist of two or more constituents bonded together.
Thus, to understand and predict not the averaged or homogenized behavior but the real
behavior of composite structures, full microscopic modeling that can describe the behavior of
each constituent is required. Analysis of full microscopic models of composite structures,
what we will call Direct Numerical Simulation (DNS) of composite materials, requires huge
computing resources. In this work, an efficient parallel direct solver, which can utilized
distributed computing resources unlimitedly, is developed as a powerful analysis tool for DNS
by using the multifrontal technique. And it is shown that DNS of composite structures is
feasible by virtue of the high performance parallel multifrontal solver. DNS of composite
materials is performed for some example problems up to about 1.4 million unknows and the
usefulness and the feasibility of DNS is verified.
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INTRODUCTION

Composite materials are more and more widely used in many engineering fields such as
aerospace structures that require high strength-to-weight ratios. However, in spite of superior
properties of composite materials, there exist difficulties in predicting the behavior of
composite structures using numerical simulations, and these difficulties make the application
of composite materials somewhat restricted.

Two approaches can be considered in dealing with numerical simulation or numerical stress
analysis of composite structures. The one is the macroscopic approach and the other is the
microscopic approach. By the macroscopic approach, composite materials are considered as
homogenized anisotropic materials and anisotropic constitutive equations are directly used. By
using this approach, the global behavior of the whole composite structures can be described
and predicted in ‘averaged sense’. However, this approach cannot properly describe the local
interactions between the constituents of the composite structures. By the microscopic



approach, composite materials are regarded as mixtures of different isotropic or anisotropic
materials and the constituents of composite materials are modeled separately. The unit cell or
Representative VVolume Element (RVE) method [1, 2] to predict the effective properties of
composite materials may be classified as the microscopic approach, but this method is rather
another methodology for homogenization since it assumes identical states for all the unit cells.
Thus, this method also cannot describe the local behavior of the constituents of the composite
materials. For complete description of the behavior of real composite structures, a detail
modeling incorporating microscopic structures is necessary. However, full microscopic
modeling of the whole composite structures has rarely been done mainly due to limited
computing power, and this is one of the major difficulties in numerical simulation for the
behavior of composite materials. For example, most of the failure mechanisms of composite
materials are initiated from microscopic level and propagated to macroscopic level, thus full
microscopic modeling is required. However, due to difficulties in numerical simulation, the
prediction of failure still largely depends on experimental data. It is almost impossible to
analyze full microscopic models using conventional solution methods since computing
resources required are so enormous.

Therefore, in this research, we developed a new efficient solution procedure that enabled us to
analyze the full microscopic models of composite structures. Modeling the whole composite
structure as it is without any simplification or homogenization will be called Direct Numerical
Simulation (DNS) of composite materials. DNS of composite materials is expected to be able
to supplement and/or replace many of experiments that are essential to understand and predict
the behavior of composite structures. Computing resources (computing time and storage)
required to perform the DNS of composite materials can be considerably reduced by using the
multifrontal solution technique [3, 4]. But using this technique is not enough for DNS since
available computing resources for single machine are limited by hardware technology on
CPU, memory, and storage device. What we need for DNS is enormous or almost unlimited
computing resources and they are achievable only by the distributed parallel computing
technique which can combine numerous distributed computing resources together into single
huge computing resource. Thus, the solution procedure must be adapted to distributed parallel
computing environment in order to obtain required computing resource for DNS by fully
utilizing distributed computing resources. In this research, by parallelizing the multifrontal
solver for distributed parallel computing environment, an efficient numerical tools for DNS of
composite materials was developed.

MULTIFRONTAL SOLVER

The concept of the multifrontal method was first introduced by Duff et al. [5] as a
generalization of the frontal method of Irons [6]. The frontal method was originally proposed
as a solution procedure for the finite element method and it has earned the reputation of being
easy and inexpensive to use. The elimination process of the frontal method is illustrated in
Fig. 1.

In their paper, Duff et al. [5] used the concept of ‘generalized elements’ to deal with general
indefinite sparse matrices. They proposed to combine a few different fronts or generalized
elements together to have larger fronts for better choices of pivoting. Geng et al. [3] applied
the multifrontal solver to finite element analysis by combining the method with the nested
dissection ordering14 and showed the efficiency. The elimination process of the multifrontal
method applied to finite element procedure is illustrated in Fig. 2.
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Fig. 1: Elimination process of the frontal method
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Fig. 2: Elimination process of the frontal method

The difference between the elimination process of the conventional single frontal method and
that of the multifrontal method can be understood by comparing Fig. 1 with Fig. 2. By the
single frontal method, one front is used and it spreads out on all over the whole domain as
fully assembled degrees of freedom (DOFs) are eliminated from the front. By the multifrontal
method, a given domain is divided into two subdomains recursively and each subdomain has
its own fronts. Then, after the recursive bisection of the given domain is completed, the
internal DOFs of each subdomain are eliminated first by the frontal method. Remaining
interface DOFs of each subdomain after eliminating internal DOFs become new ‘fronts’ and
they are merged with each other recursively in the reverse order by which the given domain is
divided. At each merging stage, fully assembled DOFs are eliminated immediately.

Table 1: The performance of the multifrontal solver vs. the single frontal solver
for the 3D composite shell structure with 4 layers

Solution TOta.lI Memory Disk
Solution
Method . Usage Usage
Time
Single Front 2822 sec 12MB 482MB
Multifront 664 sec 31MB 185MB

In the previous research by the authors [4], the superior performance of the multifrontal solver
to the conventional frontal solver was shown and the authors extended the multifrontal solver
so as to manipulate irregular meshes successfully by combining the solver with mesh
partitioning techniques. Some of the results are listed in Table 1 and Table 2. These results are



the computing time and storage required to perform finite element analysis of the irregular
mesh shown in Fig. 3 using the conventional frontal solver and the multifrontal solver. A
system which has Pentium Pro 200MHz CPU and 128MB of main memory is used to perform
this analysis. The system runs Linux operating system and GNU C/C++ compiler.

Table 2: The performance of the multifrontal solver vs. the single frontal solver
for the 3D composite shell structure with 8 layers

Solution TOtEf‘I Memory Disk
Solution
Method Time Usage Usage

Single Front 16,180 sec 30MB 1,563MB
Metis-WEM 3,063 sec 77TMB 520MB

Fig. 3: Finite element mesh of three dimensional composite shell with cutouts

The finite element mesh of the composite shell with cutouts shown in Fig. 3 has 46,680 DOFs
and 11,664 elements. This macroscopic finite element model for the composite structure
consists of four layers of composite laminates. The computation performance with 2048 fronts
is compared with that of the single frontal method with spectral element reordering [7] and
shown in Table 1. The performance of the multifrontal solver is more than 4.2 times faster
than that of the single frontal method with element reordering and the total storage usage
(memory and disk usage) for the multifrontal solver is much less than that for the single
frontal solver. In this case, memory and disk usage can be converted each other to fit available
system resource size, and what matters is the total storage usage.

The computing results for the finite element model with the same geometry that has eight
layers are shown in Table 2. This model has 84,024 DOFs and 23,328 elements. The
performance with 4096 fronts is the best and it is also compared with that of the single frontal
method in Table 2. The results are similar to the results in Table 1 and the developed
multifrontal solver is about 5.3 times faster than the single frontal method in this case.

As shown above, by using the multifrontal solver, computing resources required to solve
structural analysis problems can be reduced remarkably and large-scale structural analysis



problems can be solved within tolerable computing time on a machine with affordable core
memory. However, DNS of composite materials requires so much computing resources that
multiple distributed computing resources must be combined together. In this study, the
multifrontal solver is parallelized to utilize distributed computing resources. Parallelization of
the multifrontal solver will be discussed in the next section.

PARALLEL MULTIFRONTAL SOLVER
Parallelization of the Multifrontal Solver
The multifrontal solver itself has inherent parallelism. By exploiting the inherent parallelism,
distributed parallel computing resources such as massively parallel processors (MPPs) or

clusters of workstations or PCs can be fully utilized, and consequently enormous computing
resources for DNS of composite materials can be obtained.

Processor 1; : Processor 2 Processor 1,2 Processor 1,2,3,4
elimination elimination
backsubstitution backsubstitution
Processor 3 i Processor 4 Processor 3,4
Merging fronts within Merging fronts between Merging fronts among
each processor two neighboring processors four processors
(no communication) (communication between (communication among
two processors) four processors)

Fig. 4: Parallel implementation of the multifrontal solver using 4 processors

An illustration for parallel implementation of the multifrontal solver is shown in Fig. 4 for
four processor case. During the recursive bisection procedure for obtaining front partition,
each front is assigned to one processor respectively when the number of the front partition
reaches the number of processors to be used. And each front assigned to a processor is further
recursively bisected until the optimal number of fronts for the best performance is obtained.
Then, front merging in each processor can be performed independently. There is complete
parallelism in this procedure. This is the inherent parallelism of the multifrontal solver. After
front merging or the elimination of the interior degrees of freedom (DOFs) is completed in
each subdomain or processor, the same procedure is performed between two neighboring
subdomains or processors and this procedure requires communications between the
processors. And then, front merging is performed among four processors, eight processors,
and so on. Good parallel performance can be obtained since all communications are localized
during these procedures. The performance of the parallel multifrontal solver will be shown in
the next section.



Parallel Performance of the Multifrontal Solver

The inherent parallelism of the multifrontal solver makes it possible for the solver to obtain
excellent parallel performance compared with other direct solvers. The parallel performance
of the parallel multifrontal solver is tested using the IBM SP2 system that has the same
hardware configuration as workstation clusters except that it has faster network connection.
The first problem to evaluate the performance is a three-dimensional stress analysis problem
with 16x16x16 solid elements. The speedup and computing time using up to 16 processors are
shown in Fig. 5 and Fig. 6, respectively.
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Fig. 5: Speedup for 16x16x16 solid elements
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Fig. 6: Computing time for 16 x16x16 solid elements



By using 16 processors, the same problem can be solved about 12 times faster than using the
serial multifrontal solver. Up to eight processors, the parallel performance is near to ideal
speedup. The relatively poor parallel efficiency for 16 processors means that the size of this
problem is too small to be solved on 16 processors. A larger problem with 32x32x16 solid
elements is tested. The results are presented in Table 3.

Table 3: Speedup for 32x32x16 solid elements

No. of Elapsed Time

Processors (sec) Speedup
1 2987 1.00
2 1589 1.88
4 774.5 3.86
8 375.0 7.97
16 178.0 16.8
32 103.9 28.8

This problem is too large to fit in the main memory of single machine. Thus, disk space must
be used up to eight processors. However, this problem does not need to use disk space at all
when more than 16 processors are used. The “super speedup’ in Table 3 seems to be occurred
by this reason.

The parallel multifrontal solver developed by the authors shows excellent parallel
performance and makes it possible to utilize distributed computing resources. Therefore, it
can be used as an ideal analysis tool for DNS of composite materials.

DIRECT NUMERICAL SIMULATION OF COMPOSITE MATERIALS
Modeling of Composite Materials for DNS
In this research, DNS of fiber-reinforced composite materials was performed. A unit cell that
contains fiber and matrix is modeled with 20 node solid elements as shown in Fig. 7. This unit

cell is repeated to form a finite element mesh for DNS. A typical finite element model for
DNS is shown in Fig. 8.
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Fig. 7: Finite element mesh for unit cell



Fig. 8: Typical finite element model for DNS
One of the major advantages of the DNS is that it can deal with irregular fiber distributions.
However, modeling real composite structures in detail to microscopic level is very difficult
and complicated. Thus, by replacing the material properties of fibers with those of matrices,
irregular fiber distributions are simulated in this work.

Example problems for DNS

To show the necessity of microscopic models in understanding the failure mechanism, two
microscopic models were analyzed and the results were compared. These two models have the
same configuration as shown in Fig. 8 with 106,740 degrees of freedom (DOFs) and they are
under the same transverse loading condition. The two models also have the same volume
fraction. According to the mixture rule, they have the same homogenized properties such as
Young’s moduli, Poisson’s ratios, etc. The only difference is the distribution of fibers and
matrices. The results for stress analyses are shown in Fig. 9. The model whose results shown
in Fig. 9 (a) has uniform fiber distributions while the model in Fig. 9 (b) has several defects
where the material properties of fibers are replaced by those of matrices. But the volume
fractions of the whole structures are the same. The distribution of transverse normal stress 0,
in front face of each model is plotted in Fig. 9. The distributions are not uniform and the
results show the differences in stress distributions between these two models. The maximum
of 0y, in matrix region of the defect model is 1.2 times larger than that of the uniform model,
which shows the importance of full microscopic modeling for failure prediction, in other
words, the DNS of composite materials

(@) Uniform fiber distribution (b) Fiber distribution with defect

Fig. 9: Normal stress oy, distribution



Next, a composite structure with fiber breakage was analyzed using DNS. One end of the
structure is fixed and non-zero displacement is specified on the other end. The stress
distributions for this model are shown in Fig. 10. Near the breakage point, fibers around the
broken fiber carry more loads as shown in Fig. 10 (c). By using DNS with this model, it is
expected to be able to predict the fiber pull out under more complicated load states.
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(a) Stress at plane A (b) Stress at plane B (c) Stress at plane C

Fig. 10: Stress distribution o1, of the fiber breakage model

Finally, a huge-scale composite structure model that had about 1.4 million DOFs was solved
using the parallel multifrontal solver. The computing power of 64 processors of a Cray T3E
system and the distributed memory of each processor are fully utilized by the multifrontal
solver. The usage for computational resources is listed in Table 4. Each processor of the Cray
T3E system has 128MB of distributed local memory and they can be combined together to
solve one huge-scale DNS problem successfully.

Table 4: Usage for computational resources for DNS

Global DOFs 1,385,859
No. of Elements 98,304
No. of Processors 64
Maximum Memory Usage 6.58 GB
Total CPU Time 191,361 sec

Elapsed Time 6,795 sec




CONCLUSIONS

In this work, an efficient parallel direct solver was developed as a powerful analysis tool for
DNS by using the multifrontal technique. And it was shown that the full microscopic
modeling of fiber-reinforced composite structures to simulate the behaviors of the composite
structures into the microscopic level was feasible by virtue of the high performance parallel
multifrontal solver. Direct numerical simulations of composite materials were performed for
some example problems and the usefulness and the feasibility of DNS was verified. Further
work must be done to solve problems of larger size and to model more realistic composite
structures including angle-ply laminates.
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