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SUMMARY: A theoretical and experimental study of crack propagation dynamics in PMMA
is presented. The transition from a steady-state regime to a branching one and the stochastic
scenario of crack propagation are investigated experimentally by considering fracture surface
patterns and by high speed camera recording. We find that the mechanism for the change of
the crack propagation regime is linked with the nonlinear dynamics of the microcracks
ensemble at the crack tip and the formation of daughter cracks.
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INTRODUCTION

There is an upsurge of interest in the problem of crack advance through locally heterogeneous
materials since o complete understanding could a key to tough materials design. As a matter
of fact, microstructural elements as grain boundaries, second phase precipitation, dislocation
pile-ups, microcracks are able not only to force crack deflection by modifying locally the
stress intensity factor, but also to change qualitatively the mechanisms of crack dynamics due
to the interaction of the main crack with ensemble of the microscopic defects. As the
consequence, the progress in the understanding has been made in the development of
statistical physics of the defects ensemble, in the derivation of the corresponding continuum
description and in the improving of the adequate experimental technique.
Experimental study, statistical and nonlinear continuum description of the microcrack
ensemble evolution allowed us to establish specific properties of the system " solid with
defects " and to study the scaling laws of the transition from damage to fracture [1]. It was
found that failure scaling is the consequence of collective effects in the defects (microcracks)
ensemble and is caused by universal laws of considered nonlinear system.  The structure
evolution is accompanied by non-equilibrium kinetic  transitions that lead to the generation of
localized modes of failure and sharp changes of the symmetry properties (topological
transitions).
Nonlinear dynamics of crack propagation is the subject of the growing interest during last
decade due to the experimental observation of the dynamic stochasticity effects and the



discovery of the crack behavior that is in the strong contradiction with the traditional view in
the fracture mechanics. Experiments showed the existence of the limit velocity RC VV 4.0~

( RV  is the Rayleigh wave speed) for the steady-state crack propagation and the threshold
character of the transition to the branching regime with the stochastic dynamics. The
established experimental data revealed some unresolved puzzles from point of view of the
traditional crack mechanics. The main question is concerning the nature of physical
mechanisms controlling the crack dynamics including the branching. Theoretical explanation
of the limiting steady-state crack velocity and the transition to the branching regime was
proposed by authors [2] due to the study of the collective behavior in the microcracks
ensemble at the crack tip area. These theoretical results were supported by the direct
experimental study of crack dynamics in PMMA specimen with the usage of the high speed
camera (1 picture-100 nanosec) that allowed us to confirm the threshold character of the
transition from the steady-state to the branching regime of crack propagation at CV  and the
leading role in this transition nonlinear microcracks kinetics at the crack tip. To combine the
recording of the crack dynamic picture with the photo-elasticity method we visualized the
stress wave pattern generated at the crack tip with the pronounced Doppler effect. The study
of the of the fracture surface pattern allowed the establishment of the roughness correlation
with the stress wave pattern and the topological properties of the attractor responsible for the
nucleation of the daughter cracks.

STATISTICAL MODEL AND CONSTITUTIVE EQUATIONS

An adequate analysis of the failure processes as evolution of ensembles of typical mesoscopic
defects (dislocation pile-ups, microcracks and microshears) is thought to be impossible
without a statistical method. However this should be a statistical mechanics of a few randomly
located and interacting defects, changing their dimensions and orientations in the field of
external and structural stresses, but it is not the phenomenological statistics. Taking into
account the experimental data concerning nucleation and growth of microcracks (variable
number of interacting defects, change of their size and orientation parameters during loading)
statistical description arises as complicated problem, the solution of which may present
essential difficulties if not supported by additional hypothesis.
 The parameters describing the typical mesoscopic defects (microcracks, microshears) were
introduced in [1] as a localization of the corresponding symmetry group of the distortion
tensor. These defects are described by symmetric tensors of the form kiik vsvs =  in the case of
microcracks and )(2/1 kikiik vllvss += for microshears. Here v is unit vector normal to the
base of a microcrack (normal break) or slip plane of a microscopic shear; l is a unit vector in
the direction of shear ; s is the volume of a microcrack or the shear intensity for a microscopic
shear. The microscopic kinetics for the parameter kis is determined by the Langevin
equation

,)( kimlkiki FsKs −=!       (1)

where )( mlki sK and kiF  are, respectively, the deterministic and random parts of the force field

and satisfy the relations 0=ikF  and )()()( ckicki ttQtFtF −= δ . Here Q  is the correlation
function of the fluctuating forces (non-equilibrium potential determining the energy relief of
the initial structure). The size and orientation distribution function ),,( lvsW  of the defects in
the phase space of the states is given by the Fokker-Planck equation
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The energy of  these defects, which consist of dislocation pile-ups, can be written in the form

2
0 kikiki ssHEE α+−=       (3)

and includes a term kiki sH  that reflects the interaction of defects with an external field and
between defects. The “effective field” kiH  is written as a sum of an external stress field and
the mean-field produced by the defects: kikiki pH λσγ += , where kiσ  is the macroscopic

stress tensor, kiki snp = is the macroscopic microdefect density tensor, n is the

microdefect density, and λ  and γ are parameters of the material. The quadratic term 2
kisα  in

Eqn (3) reflects the energy fluctuation arising in the immediate vicinity of a defect as a result
of the development of the defect.
 In [3] the process of damage accumulation was described assuming the self-similarity of
microdefects distributions at the various failure stages (Fig.1)

Fig.  1. The distribution of cavities in concentration N and size l in iron during the
deformation (creep, stress 9.3 MPa) at  temperature 700°C in dimension (N,l) and self-similar

(N/Nsc, l/lsc) coordinates: 1 - %1.2=ε ; 2 - %2.6=ε ; 3 - %3.9=ε ,  [3].

The statistical self-similarity of defect distribution reflects the important from our point of
view fact that the distribution function ),,( lvsW  has a steady-state form for different time
given by the stationary solution of the Fokker-Plank equation with the parametrical
dependence of the distribution on some parameter of the self-similarity. The temporal kinetics
for this parameter could characterize the formation of the self-similar pattern in the defects
ensemble and the change of the specific energy of the system in the course of the creation of
the pattern for new scale level in the mesodefects ensemble. This parameter can include two
characteristic scales for the defect system: characteristic size of defects and the mean distance
between defects. The analysis of experimental data showed that self-similarity of defect
accumulation processes may be observed in essentially distinguishing conditions of material
deformation.
The qualitative interpretation of the self-similarity hypothesis suggests that geometrical
pattern of the defect distribution at the late evolution stage represents magnification of this



pattern existing at the earlier stage. Thus, the self-similarity allows us to introduce in
consideration the average dimensions of defects and their energy characteristics and to
establish their correspondence to the applied loading.
The solution of the Fokker-Planck equation based on the assumption of statistical self-
similarity of the defect distribution [6] makes it possible to represent the distribution function
in the form of the steady-state solution, )/exp(1 QEZW −= − , where Z is a generalized
partition function. The parameter Q  characterizes the energy relief of the initial structure
(grain boundary energy, energy of dislocation pile-ups, influence of the precipitates)
representing the microcrack nuclei. This case is valid for the quasi-brittle damage, which is
accompanied by the change of the mean size of microcracks. For the damage accumulation
under the ductile failure the self-similarity assumption may also be extended if we introduce
the spectrum of iQ  for ensembles of defects of each mesoscopic levels. Experimental data
presented in [3] support this assumption. The macroscopic magnitude kip  of the defects
density is determined by averaging:

lvlv 33),,( dddssWsnp kiki ∫= (4)

Figure 1 shows zxp  versus zxσ  for the case of the uni-axial tension for different values of the
parameter nλαδ /2= . The parameter δ  is determined by two characteristic scales: the
characteristic size nl  of the nucleus of a mesoscopic defect and the average distance cl

between defects. The dislocation model of mesoscopic defects [3] gives 0/VG≈α , where G is
the shear modulus and 0V  is the initial “free” volume (volume of the nucleus). Estimating the
mean-field constant as G≈λ  gives nc ll /≈δ . The solution of Eqn (4) shows that transitions
to equivalent classes of curves in Fig. 1 occur when the parameter δ  reached critical values
*δ  and cδ , which are bifurcation points. The curves in Fig. 2 correspond to the characteristic

responses of a material to a change in the basic modes describing an ensemble of defects. The
solid lines in Fig. 2 show the “thermodynamic” branches [7] corresponding to minima of the
free energy. The points c

x
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“dynamical” branches.

Fig. 2. Nonlinear solid responses on microcrack growth

This statistical description allow us to determine the characteristic solid responses caused by
defects. The regimes are defined by two internal scales: characteristic scale of structural
heterogeneity gl  (size of grains, blocks) and correlation radius cl  of interaction between
defect. Three responses of material to the defect growth were established: monotonous



( )*δδ > , metastable ( )*c δδδ <<  and unstable ( )cδδ < ; *δ and cδ  being the bifurcation
points correspond to the change of the asymptotes. The monotonous response ( )*> δδ  is
characteristic of a weak interaction between defects. In metastable area the jump-like change
of ikp corresponds to the orientation ordering of the mesodefect ensemble. The pass over the
δ c -asymptotic leads to the infinite jump of ikp . The passes over the asymptotics can be
recognized as topological transitions that lead to the symmetry changes due to the new
organization in the defect system. The free energy F  reflecting the spectrum of the solid
responses on the defect growth (Fig.1) can be represented as the expansion
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where A,B,C and D are the parameters of the expansion. Taking in view the polar character of
the defect interaction the gradient term was introduced that allowed us to describe the
nonlocality effect in a “long-wave approximation”, χ  is the nonlocality coefficient. The
forms of the coefficients upon the quadratic term and the higher term provide a qualitative
changes of material responses on the defect growth in bifurcation points *δ and cδ .
Taking in view that the driving force of the microcrack growth kinetics is the free energy
release, we obtain as the consequence of the evolution inequality (Ginsburg-Landau approach)
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where Γ  is the kinetic coefficient, χζ Γ= . Using the potential ikikF εσ−=Φ  for that the
independent variables are ikσ  and ikp , and the determination of deformation tensor
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The equations (6), (7) represent the system of the constitutive equations of quasi-brittle solid
with microcracks.
The transitions over the bifurcation points cδ  and *δ  lead to the sharp change of the
symmetry of the distribution function caused by the different interaction of the scalar and the
tensor modes of defects with external stress field depending on the value of δ  (the size of the
defect nuclei r that is determined by the characteristic size of structural heterogeneity and
correlation radius of the internal stress field providing the interaction between
defects). Studying the kinetic equation (6) with the free energy in the form Eqn (5) we
consider the type of the solutions for the condition of the simple tension zzσσ =  when ikp

has only one component p=zzp . The analysis of the defect evolution may be carried out due
to the study of the heteroclinic solution of the equation
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The behavior of such solution can be visualized on the phase portrait (Fig.3). When *δδ >
solution has the form of the spatial-periodical distribution )exp(φipp ⋅→ . When *δδ →
Eqn (8) changes locally from elliptic to hyperbolic (separatrix 2S ) and periodical solution is
transformed to the solitary wave solution that corresponds to the diverge of the internal size
Λ  as ( )*ln~ δδ −−Λ , (Fig.4).

Fig.3:  Heteroclinic solution. Fig.4:  Spatial-time structures in defect
ensembles.

The pass over the bifurcation point cδ  (separatrix 3S ) gives the qualitative new type of
spatial-temporal structures which are characterized by the explosive-like kinetics (peak
regimes [9]) of the p-growth over some spectrum of spatial scales (Fig.4.). Let us consider
the specific features of nonlinear system for cδδ ≤  passing the instability threshold cp

(Fig.1). In this case the p-growth is governed by the difference in the orders of higher terms
of expansion for free energy, Eqn (5). Assuming the power law for the nonlocality parameter

βζζ ppc
"
)(0=  the kinetic equation for pcan be written in the form







+≈

x

p
pp

x
ppS

t

p
cc ∂

∂ζ
∂
∂

∂
∂ βω

"
""
)()( 0

                                    (9)

where cppp /="  (in the following the "hat" is dropped), 3/5=ω . It was shown in [4] that the
developed stage of p-growth exists as the self-similar solution for ctt→  and can be
represented in the form
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where )(tg  governs the growth law of over the spectrum of the scales iζ  (the eigen-value
spectrum); ϕ defines the half-width evolution of the localization area; 0>G  and 0>m  are
the parameters combined from the parameter of Eqn (9).



EXPERIMENTAL INVESTIGATION OF CRACK PROPAGATION.

Various techniques can be used for investigation of crack propagation dynamics. One of them
[5,7] provides good accuracy with high resolution in time for the determination of crack
propagation velocity. This technique is used to study the statistical features of crack
propagation. The propagating crack cuts a thin metallic film on the surface of a specimen thus
changing the film electric resistance. By measuring this resistance one can determine the
coordinate of the crack tip. Another experimental technique is based on high speed
photography of the propagating crack. This technique allows us to obtain stress distribution
and stress intensity in the specimen using the photoelasticity or shadow method [7].

Fig.5: Experimental setup

In our experiments we use rectangular PMMA specimens with length L of 141 mm, height 66
and 86 mm and thickness varied from 0.6 to 1.9 mm. PMMA constants are: E=6.0GNm-2,
ν=0.33, ρ=1.18g cm-3. The Rayleigh wave speed is 1400m/s. Stress was varied from 13 to 45
MPa.
The scheme of experimental setup is presented in Fig.5.
The experimental apparatus consists of a loading device to provide strain up to 10-2, a high
speed camera to record the stress field and a synchronising device. We measure the force
applied to the sample, the mean crack speed and the stress field in the specimen. Finally we
investigate the fracture surface. In most experiments the crack was initiated in the middle of
the specimen short side by a sharp blade. Fracture is performed by applying force in the plane
of the sample and parallel to the shortest side of the plane.
We study the stress evolution using the photoelasticity method. With the high speed digital
camera Remix REM 100-8 provided by LAMEF (ENSAM France) eight pictures with
resolution 740x574 were recorded. Time lag between two pictures was 10 or 5 µs.
The crack velocity was measured in two ways: Knowing the crack length on each picture and
time lag between pictures one can obtain the mean crack velocity. Another method is based on
the Doppler effect. We study the acoustic waves generated by the crack and propagating
forward (

11,λν ) and backward (
22,λν ). By measuring the wavelength difference we obtain the

crack speed
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where RV  is the speed of the emitted waves; RV  is obtained by measuring the propagation rate
of the wave front. We have carried out experiments on interaction between the moving crack
and holes in the sample. During this interaction the crack produces a single pulse and in
certain experiments the crack arrest is observed. It is easy to identify the position of the pulse
front in each picture and to obtain the velocity of acoustic waves in the specimen for given
loading and frequency range. The crack generates stress waves at the velocity of 1400±100
m/s close to the dynamic Rayleigh wave speed *

RV
 [6]. Both methods are in good agreement.

The discrepancy between results is about 7-8 %.

  
Fig.6: Wave pattern and scheme of process.

Experimental results
The crack propagates in two regimes: steady-state and branching (Fig. 7).

i) In the steady-state mode the crack propagates at a low speed (up to 416 m/s or 0.3
VR) and produces the smooth surface.

ii) In the branching mode the crack velocity is higher: 500-800 m/s (0.36-0.6 VR).

Fig.7.  Stress field  produced by slow (left) and fast (right) cracks.

a b c

Fig. 8: Typical fracture pattern for the crack velocity: a- 600 m/s, b, c - 400 m/s.
Magnification is a,b - x 60; c - x 600.



The fracture surface generated by the fast crack consists of “mirror” zones, Fig.8. These zones
correspond to the daughter cracks in the process zone near the crack tip. The location of these
zones depends on the crack speed. When the speed is low, the zones are in the same plane (the
smooth crack surface), at high velocities they have different orientation, which corresponds to
the high roughness of the crack surface. The crack surface roughness depends on the crack
speed. At velocities exceeding 650 m/s the macrobranching appears.

INSTABILITY MECHANISM UNDER CRACK PROPAGATION

Let us apply the developed approach concerning the spatial-time kinetics of the microcrack
ensemble evolution to the study of the mechanisms that govern the dynamics of crack
propagation. It is obvious now that the process of the interaction of the main crack and the
surrounding microcrack ensemble includes two stages. The first is the formation of the defect
distribution in the process zone at the crack's tip, which provides the creation of the damage
localization areas with qualitative new properties. It means the formation of the new defect
structure with the radius of the own stresses reaching the main crack that provide the
sensitivity of the main crack to the new structural defect at the scale level corresponding to the
main crack. The kinetics of the microcrack ensemble involves the generation of new scales in
the process zone in the form of the dissipative structures with the peak regime kinetics on the
fundamental length .The solution of Eqn 9 contains two parameters: the fundamental length

TL  and the "peak time" ct . The peak time ct  represents a sum of two times: 1t  is the period
of the formation of the spatial defect distribution that is close to self-similar one, and 2t  is, the
so-called, focusing time [8]. These two parameters determine the critical velocity of the crack
propagation 
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V ≈ . Now we consider in more detail the crack propagation under the

conditions (external stress and initial crack length), which are responsible for the steady state
( cVV < ) and crack branching ( cVV > ) scenario. The steady state propagation in the direction
of the main crack is realized for external conditions providing the creation of the self-similar
profile of microcrack distribution along the main crack when the crack speed doesn't exceed
the critical one cV . It means that in the process zone at the crack tip the stress distribution

cσσ ">  is formed on the scale TL  and there exists the time period c
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of a new daughter crack along the trace of the main crack. For the velocities cVV >  this is
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≈  (here IK  is the stress intensity factor; θ,r  are
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which the external conditions defined by the value of *
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tt =<  doesn't allow the formation of the self-similar profile of

the microcrack distribution (daughter cracks). The next important question is what mechanism
governs the increase of the main crack speed in the range cVV >  when the rate of the



interaction of the main crack with the closest daughter crack is limited by cV . As it follows
from the consideration of the scaling for the spalling [4], the reason is the excitation of the
numerous "peak regime structures" when the scale of the process zone pzL  with cσσ ">
expands as kLL Tpz ≈ , where ..2,1=k . The nucleation of these structures on the total length

kLT (complex structures [1]) can be considered as the subjection of the system behavior to
new attractor which is determined in the set of new independent coordinates, that is in the set
of the structures of the various complexity obtained from the self-similar solution. (10). This
leads to the sharp change of the symmetry properties of the system that was predicted in [10].
The authors are kindly indebted to Professor J-L.Lataillade for the opportunity of the
experimental study at LAMEF-ENSAM and the supportive discussions.
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