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SUMMARY:: The purpose of this paper is to present the failure behavior modeling of 3D-
braided composites. Two main parameters are considered to be predominant on the failure
behavior; the variations of the yarns orientation, which generates a complex field of stresses,
and the scattering of internal values of strength partly due to damages induced in the yarn
during the manufacturing and consolidation steps.

A preliminary work has been done to identify the internal geometry of the braided
composites. Once achieved, we propose a sub-cell modeling solution based on a multi-scale
analysis allowing to locate and quantify the material rate and mechanical influence of each
constituent (fiber or resin) within the composite. The analysis of the braided composite
mechanical behavior finally consists in studying that of an aggregate of multi-scale sub-cells
with individual properties. Theoretical results obtained show a good agreement with
experiments carried out on a Carbon / PA12 3D-braided composite.
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INTRODUCTION

The literature generally shows two main approaches to consider the failure behavior of
composites. The first one considers a global response of the composite up to failure. Then,
yield criteria (Hill, Tsai-Wu...) are applied to describe the material macroscopic behavior. In
this case, the criteria formalism does not systematically take into account the fracture
mechanisms involved. The second approach is based on the observation of fracture
phenomena. This observation proves that the composite failure generally consists in mixed
effects of fiber rupture, matrix cracking and debonding at the fiber / matrix interface that can
lead to delamination.

In the specific case of 3D-braided composites, the macroscopic failure follows from local
fracture of yarns and no more from matrix cracking or delamination phenomena. The classical
criteria become inaccurate and one needs to define an approach adapted to the local analysis
of stress heterogeneity and to the description of the braiding yarns spatial evolution within the
reinforcement.



INTERNAL GEOMETRY OF A 3D CARTESIAN BRAIDED COMPOSITE
Four-step Cartesian braiding technique

The braided preforms of the present study have been made by using the four-step Cartesian
braiding technique and in collaboration with the Institut Textile de France. This technique was
analyzed and adapted by many authors in the last ten years [1][2]. The step number indicates
the number of sequences required for a machine cycle (Fig. 1). The first step consists in the
shift of the yarns attached to the rows. The second step implies the shift of the columns. The
third and fourth steps respectively present the inverse movements of the steps one and two.
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Fig. 1: The four-step Cartesian braiding technique.

The braided preform obtained is reinforced in its whole volume and may present a significant
thickness and a complex section in which the braiding yarns are interlaced to such a degree
that one cannot distinguish separated layers. Figs. 2a and 2b show the photographs of 3D
Cartesian braided preform and composite.
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Fig. 2: (a) A Cartesian braided preform. (b) A 3D-braided composite
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Internal geometry identification

This 3D-braided composite is a very heterogeneous structure. As a consequence, the stress
and strain fields within it depend greatly on the constituents repartition, on their size and on
their spatial arrangement. In other words, it depends on the textile internal geometry.

The only acquaintance of the braiding visible angle 6, and the yarns diameter d — called
braiding principal parameters (Fig. 3)- is not enough to describe the yarns path and, then, to
identify the unit cell of a consolidated Cartesian braid. Thus, we have proceed to the
sectioning of a rectangular braided composite (obtained according to the scheme described in



Fig. 1 with ten columns and three rows) and made micrographies at several successive plans
parallel to (x,y). Next, each micrography is digitized and treated in order to restitute the yarns
contour (Fig. 4). The study of the evolution of yarns (x,y) position for consecutive z-values
allows the 3D reconstruction of an idealized braided unit cell (Fig. 5). The yarns path
equations are derived from classical polynomial functions and the section equation can be
chosen among elliptical, lenticular, rectangular or horse-track shape functions.
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Fig. 3: The braiding principal parameters 6, (visible braiding angle) and d (yarn diameter).
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Fig. 4: Digitization of micrography in order to detect braiding yarns contour.

Fig. 5: 3D reconstitution of an idealized geometry of a braid unit cell.

MULTI-SCALE MODELING

Multi-scale meshing

Once the geometrical description achieved, we begin to study the mechanical modeling. A
brief bibliography shows the interest to use a sub-cell analysis. It allows to determine the
stress and strain internal states; essential condition to a study of the failure behavior. This sub-
cell analysis is associated with a multi-scale analysis which aims at taking into account the
various mechanisms implied at different material scales during the composite damage.

So as to illustrate with the simplest possible way the multi-scale meshing [3], we propose to
study the case of a single yarn (Fig. 6a) extracted from the braid unit cell. To this unit cell,
and, a fortiori to this yarn, we superimposed a meshing of regular intermediate elements (Fig.
6b). These elements have eight nodes that define as many mesoscopic elements (Fig. 6¢). If



the entire node does not belong to the drawn volume of yarn then the associated meso-
element is of resin type. On the contrary, the associated meso-element is of yarn type and
possess the mechanical characteristics of a fiber / matrix mixture modeled by an assembly of
four microscopic elements (Fig. 6d) and presenting the local spatial orientation derived by
minimizing the distance between the meso-element center and the yarn path.

The main feature of this multi-scale meshing is to offer the opportunity to separate and to
localize the resin, yarn and fiber zones and, then, to take into account the whole actual
phenomena that are implied during the unit cell damage.

(a}-avam cxiracied from the unit cell peomictry k- meshing of regular intermediate clemicnts
T -1y e
_____ mgss-ced |
I l-.;..-r o ) T 5|n'|lg.r-.
- " K] 11 Esine by
- __"r'_ N - | : M | mscraece|
SR - A | IR
3 ot yarnsjy pe A3 b ﬁ_h.-r--.x]::
. r * L mese-cell F i i L
- — ] PR &
! § v ee{. .
- (&= 1 |||IL'r||:||.-:|1 e element 1% deserbed by (elp= 1 varn=lvpe meso=cell 1% described
 meso-cells by 4 miceo-cells

Fig. 6: The multi-scale meshing technique.
Use of this multi-scale meshing for the failure modeling of 3D-braided composites

For each scale, we have to define the mechanical characteristics of 2D or 3D elements as a
function of sub-elements individual properties. A numerical procedure based on stationary
functions derived from complementary and strain energy is developed.

The main idea of the method consists in making stationary both the complementary U, and
the strain Ug energy. This is done in order to define the lower and upper bounds of the
effective stiffness and the internal strain and stress values of the unit cell (=NyNyN,
intermediate elements). In the case of the intermediate elements, we have Ny=N,=N,=2 (one
intermediate element=eight meso-elements). In the case of the meso-elements, we have
Nx=Ny=2 and N,=1 (one meso-element =four micro-elements).

Ug and Ug are expressed as:
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Where vy, {0}y, {€}p, [S]p and [c], represent respectively the volume ratio, the stress and
strain tensors, the compliance and stiffness matrix of the sub-cell p. {Z}, {E}, [S] and [C]
represent the average (or macroscopic) tensors of stress and strain and the average compliance
and stiffness matrix.



By means of Lagrangian multipliers, one can take into account the conditions of continuity
and averaging of stress (Uy) and strain (Ug) and write the new functionals Us* and Ug*:

Ug*=U, +Af(3H{ § )

u*=U, +a,g(B8{} p) A, a, : Lagrangian multiplier @)
One can then write the conditions dU _*=0 and oU_,* =0 as:
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Solving Eqn 3 for the sub-elements stress and strain allows to relate the sub and the total

average vectors [4]:
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Then the upper and lower bounds of the NyNyN,-cells assembly effective stiffness can be
written as:
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By writing Eqn 4 as:
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and by using Eqgn 5, one can estimate the bounds of the internal strain and stress according to
imposed external strain and stress up to the micro-cells scale. The knowledge of yarns internal
stresses and strains is directly exploitable to anticipate the composite failure behavior that is
considered as a sequence of yarns local fractures.

(6)

FAILURE CRITERIA AT THE MESO-ELEMENTS SCALE
General aspects

In any 3D composite, the macroscopic failure generally results from local failures of yarns
and not from phenomena linked to matrix cracking. It is essentially due to the reduction of the
fiber / matrix interface and to the disappearance of matrix pockets. Cox [5] reports that the
failure of 3D composites is restricted to phenomena combining axial tension and compression
and yarn shear (kink band formation) failures, which the resin does not affect.

Then, instead of using a too microscopic approach, we choose to directly integrate the failure
criteria (tensile and shear strength) at the meso-scale of the model (at the scale of the yarns) in
order to avoid the errors done when changing from the filaments to the yarns scale. We also



take the choice to consider the scattering of local values of strength partly due to damages
induced in the yarn during the manufacturing and the consolidation processes by studying a
statistical distribution of those values.

Tensile tests on braiding yarns

Yarns made of Carbon fibers spun with PA12 thermoplastic matrix (fiber volume ratio:
V=60%) are extracted from the braided preforms and consolidated at 220°C under a seven-
bar pressure during one hour in order to simulate the consolidation cycle of the Cartesian
braided composites. Next, glass / epoxy tabs are placed at the consolidated yarns ends.

The tensile strength is described by mean of a three-parameter Weibull law (Eqn 7) in order to
take into account the influence of the yarn gauge length (this gauge length appears in the
modeling in term of yarn length within a meso-element).

=1- expﬂﬁ—gazg; (7

where F, (o): the cumulative distribution function (CDF) of the yarn strength value,

o: the stress applied to the yarn,
oy, : the scale parameter,

[3: the shape parameter,
a: a correlation factor which describes the gauge length effect (0<a <1).

For each of the four different gauge lengths selected (35, 70, 105, 140 mm), we have carried
out tensile tests on 23, 18, 18 and 15 samples. In fact, we have tested 32 yarns for each gauge
length but we only keep results obtained from tests where the yarn has broken far from the
tabs (Fig. 7). It appeared that the longer was the yarn the less the failure was localized at this
level.

Then, we express the variation of the braiding yarn strength as a function of the CDF for a
reference length L; (F.;) (Fig. 8).

Ln|Ln{/@-F. (0)))=BLn(o)-(B;Ln(o, )-Ln(L,)) (8)

The shape and scale parameters 3; and oy, the averages, standard deviations and variances for
each length L; are summed up in table 1.

Fig. 7: Tensile test carried out on yarn elements.



Table 1: Weibull's law parameters (3; and oy ; for each gauge length L; — Averages,standard

deviations and variances of the experimental values.

Gauge length Scale Shape Averages Standard Variance
Li parameter gii _ parameter Ui deviations & Si
Lo=35 mm 912 6.612 851 151 0.177
L;=70 mm 890 6.548 830 148 0.178
L,=105 mm 844 6.574 787 140 0.178
L3=140 mm 770 7.330 722 116 0.161
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Fig. 8: Strength C.D.F. of the carbon / PA12 yarn for various gauge length.

In order to determine the third parameter of the Weibull's law a, we study the variations of
O /oLo as a function of Li/Ly (with Lo=35 mm) (see Fig. 9). The value of a is estimated to

0.61.

Finally, we can write the CDF of the carbon / PA12 yarn for any gauge length (Eqn 9).
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Fig. 9: Determination of the third parameter a - Variation of Ln(o.i/0,) as a function of

Ln(Li/Lo).



Shear tests on braiding yarns

In the literature, we do not find any formalism dealing with the shear failure in terms of
mechanical local phenomena. Intuitively, one may conceive that the shear strength decreases
when the number of filaments within the yarn section increases, but in the same
reinforcement, the same yarn, the number of filaments does not vary. For this reason, we
choose to model the shear strength CDF by a two-parameter Weibull law.

The experimental device used to determine the shear strength is shown in Fig. 10a. The
scheme of the test procedure is illustrated in Fig. 10b. Thirty samples of yarn with a length of
70 mm and an average area S; of 0.8 mm? have been tested. For reason of loading symmetry,
the shear stress is expressed as a function of the externally applied load P:

T, =— (10)

We find that the shear strength CDF matches the two-parameter Weibull's law below:

F(r) =1-exp|- (t/96.8)> | (11)
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Fig. 10: Shear tests on yarns -a- shearing experimental device, -b- overview of the
experimental setup.

Details on numerical procedure for progressive failure simulation

The procedure for failure simulation of the NyNyN,-cells assembly according to an external
mono-axial stress is detailed in Fig. 11.

First, the meso-elements strength under tensile and shear stress are randomly assigned to a
Monte Carlo simulation. The bounds of the undamaged composite stiffness matrix are
calculated in the next step. Next, by using Eqn 6, the local stresses within the meso-elements
are determined according to an arbitrary external stress. They are compared to the critical
stresses in order to investigate the macroscopic stress value that would yield to the failure of
the first meso-element (yarn segment). The stiffness matrix of the meso-element is reduced by
the selective RC method (rows and columns of the matrix [c], set to zero according to the
critical stress which was exceeded). The elastic analysis is carried on taking into account the
drop of stress (Z, - Z,.) and the change of unit cell stiffness matrix [C] (change of [S]).



EXPERIMENTAL VALIDATION OF THE THEORETICAL MODEL

Tensile tests are carried out on forty-three-yarn-braided-composites. The figure 12a shows a
comparison between three experimental and the two progressive damage simulations (Us and
Ue).

In the case of the Uy approach, the first simulated meso-element failure occurs before the one
given by the U, approach (130 MPa according to Us; and 180 MPa according to Ug). The
failure of the whole braided composite is then predicted before the one determined from the
U; approach.

We remark that experimental curves are included between the bounds defined by our two
variational approaches for strain values lower than 8000 um/m. After that, discrepancies may
be observed and we notice that the simulated stress and strain to failure values are lower than
the experimental ones. This is partly due to the original formulation of the strength problem
that is based on maximum stress criteria and to the fact that strain criteria are not taken into
account. We can also explain this by the fact that debonding phenomena are not taken into
account in our present model. However, we can conclude that our model provides a rather
good trend as for the prediction of damage behavior of 3D Cartesian braided composite under
mono-axial loading.

We conclude the study of 3D-braided composite failure by the influence of the braiding angle
on the macroscopic tensile strength. We observe that the tensile strength value decreases from
805 to 87 MPa when 6, varies from 10 to 50°. In term of internal stresses, we observe that the
greater the visible braiding angle is, the more predominant become the local damages due to
shear phenomena.

-------------------------------------------------------------------

Solving of the first elastic
problem on the undamaged unit cell
N
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Fig. 11: Illustration of the progressive failure simulation procedure.

CONCLUSIONS

Homogenization techniques based on variational principles have been proposed in order to
predict the damage behavior of 3D-braided composites. These techniques, which need the
prior knowledge of the internal reinforcement geometry, have been adapted in order to study
the composite macroscopic failure in term of tensile and shear local failures. First



comparisons between experimental and theoretical results have proved that the proposed
approach can be used in order to give the trends of damage functions.
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Fig. 12: (a) Comparisons between experimental and simulated damage functions in the case of
a 3D-braided composite. (b) Influence of the braiding angle.
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