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SUMMARY: The purpose of this paper is to describe an optimization procedure that provides
stacking sequences fulfilling required stiffness properties. The elastic properties of the plates
to be designed are described by twelve lamination parameters. An objective function
involving these twelve required parameters is minimized with respect to the ply orientations
that are considered as continuous variables. A method based on the gradient method is used to
perform the minimization. Various examples of laminated plates exhibiting particular elastic
properties illustrate the approach. In conclusion, all required properties are obtained with
twelve plies and the stacking sequences are not symmetric, even though the corresponding
plates are uncoupled.
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INTRODUCTION

The classical lamination theory [1] provides a frame of reference for analyzing the elastic
properties of laminated plates. When a constitutive material and a stacking sequence are
chosen, one can easily compute the three different stiffness matrices that govern the elastic
properties of the plate. The stacking sequences are often determined with some classical rules.
For instance, the ply angles are set to some pre-selected ply angles (for instance 0°, 45°, 90°)
or the laminated plates are symmetric to obtain a zero coupling matrix. However, it must be
pointed out that the inverse problem that consists of the definition of a stacking sequence from
required stiffness properties has not been solved yet in the general case. Some analytical
solutions are available, but the number of plies is fractional [2] or the minimum total number
of plies required to achieve the properties is important, 36 plies for instance in the case of
fully isotropic laminates [3]. Numerical methods based on optimization procedures are also
available. They are often based on genetic algorithms since the ply orientations are to be set to
some pre-selected ply angles in this case [4].
The aim of this work is to provide a numerical approach to define stacking sequences from
required elastic properties. These properties are considered to be defined by a set of
lamination parameters and the goal is to obtain some stacking sequences that exhibit these



required parameters. The present approach clearly departs from the usual ones available in the
literature: the ply angles are considered as continuous and the stacking sequences are not
symmetric a priori even though uncoupled plates are determined. The main advantage is to
give some additional degrees of freedom that will turn out to be useful to design thinner plates
than those which would be obtained with the classical rules. Since the angles are presently
assumed to be continuous, the numerical procedure used for the optimization is based on the
well-known gradient method that has been modified to take into account the problem of the
local minima of the objective-function.
The design method and its numerical implementation are presented in the two first parts of the
paper. The approach is then illustrated with some examples of thin laminated plates exhibiting
particular properties.

STATEMENT OF THE PROBLEM

Definition of the lamination parameters

Within the framework of the classical lamination theory, the elastic properties of a laminated
plate is defined by three normalized stiffness matrices A*, B* and D* that describe respectively
the in-plane, coupling and bending behaviours [1]. The calculation of the matrices
components can be achieved advantageously by introducing invariant quantities Ui i=1..5, and
lamination parameters Viα i=1..4, α=A, B, D. For instance, the in-plane stiffnesses may be
described as follows
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A similar relationship holds for both the B* and D* matrices: the subscript is changed into B
and D respectively. Moreover, in the case of the B* matrix, the first matrix in the right hand
side built up with the invariant parameters Ui i=1, 4, 5 disappears.
The lamination parameters are defined by
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where the wα(i) are wheighting factors defined for each of the three matrices [1] and n is the
number of plies.
If we consider now the problem of finding a set of angles leading to required stiffness
properties, it is clear that one must first choose a given constitutive material defined by its
Ui’s, i=1..5 and second define a stacking sequence leading to the twelve required lamination
parameters denoted αiV , i=1..4, α=A, B, D. This second problem is now addressed.



Definition of a stacking sequence exhibiting required lamination parameters

The problem of the definition of a stacking sequence defined by a set lamination parameters
has been addressed first by Miki in the separate cases of in-plane [5] and bending [6]
properties. Fukunaga unified this approach by considering simultaneously in-plane and
bending properties [2]. These methods are analytical. They lead to some solutions with twelve
plies but the thickness is different from one ply to another. In these cases, the stacking
sequences are some mixtures of angle-ply and cross-ply laminates. Another approach is to
consider a priori that the ply angles can be set to some pre-selected standard angles and to use
a suitable numerical strategies to obtain a solution. Some genetic algorithms have been
proposed recently in the literature ([4] for instance). However, its not sure that any required
lamination parameters can be reached with such a small set of ply angles. Moreover, one
could consider that the stacking sequences are not symmetric to increase the freedom in the
design since the condition of symmetry is sufficient and not necessary.
The design problem is presently considered as an optimization problem. An objective function
is first defined and it is minimized with the well-known gradient method which has been
modified because the function exhibits many local minima.

Objective function and minimization

The objective function is built as the sum of the squared differences between the twelve
lamination parameters and the twelve corresponding required values αiV and αiV

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )24D4D

2
3D3D

2
2D2D

2
1D1D

2
4B4B

2
3B3B

2
2B2B

2
1B1B

2
4A4A

2
3A3A

2
2A2A

2
1A1A

V-VV-VV-VV-V

V-VV-VV-VV-V

V-VV-VV-VV-V)(F

++++

++++

+++=Θ

(3)

where Θ is the vector of the ply angles. The objective function is zero if the laminated plate
exactly exhibits the required properties. Its is close to zero if the laminated plate
approximately exhibits the required properties. A classical optimization strategy based on the
well-known steepest descent method has been used to minimize the objective function. Since
this function exhibits many local minima, the method has been improved as follows. First, the
programme is run many times from different starting points chosen randomly. The minima
found are collected and sorted. The stacking sequence found at the lowest minimum found is
then considered as the starting point of a final run of the programme with refined values of the
search vector used in the steepest descent. The numerical aspects of the procedure are
discussed in Ref. [7]. Some typical results obtained with this approach will now be examined.

APPLICATION TO THE DETERMINATION OF SOME LAMINATED PLATES
EXHIBITING REQUIRED PROPERTIES

Design area

This aim of this section is to examine the capabilities of this method in some relevant
particular cases of orthotropic plates.



The first question is to determine the allowable values for the required lamination parameters.
This problem has been addressed by Miki [5][6], Fukunaga [2] and Grenestedt [8]. When
uncoupled laminated plates are considered, the four lamination parameters iBV , i=1..4, are
zero. When orthotropic plates are considered, four out of the eight remaining lamination
parameters are zero in the ortotropy axes: 0VVVV D4D3A4A3 ==== . The four non-zero
remaining parameters are not independent [5][6]. Let us now consider two points defined with
these remaining non-zero parameters: ( )A2A1A V,VQ  and ( )D2D1D V,VQ . It has been shown
[5] [6] that they are located inside a design area of particular shape in the αα 21 V-V  planes,
α=A, D, since this area is bounded by a straight line and a parabola (see Fig. 1). Hence, an
uncoupled orthotropic plate is defined by these two points that are called design points in the
following since the design of a stacking sequence from these two points is addressed in the
present work.

Fig. 1: Design area for the in-plane lamination parameters (the design area for the bending
lamination parameters is the same).

If the two design points are the same (QA =QD), the plate exhibits the same in-plane and
bending properties and can be considered as homogeneous with respect to the elastic
properties. In this case, both points can be chosen anywhere inside the design area [2]. On the
other hand, if the design points are not the same, the design area is only a restricted part of the
parabola [2][8]. In this case, the plate is heterogeneous with respect to the elastic properties
since in-plane and bending properties are not the same. In the following sections, three
different cases will be examined: fully isotropic plates (all lamination parameters are set to
zero: QA = QD = O), homogeneous orthotropic plates (QA =QD) and heterogeneous plates (QA
≠ QD).

Fully isotropic plates

The problem of designing fully isotropic plates is addressed in the section. This problem has
been examined by Wu et Avery [3] who found some exact solutions with 36 plies at least with
standard ply orientations : 0°, ± 45°, 90°. As explained in the above section, the problem is to
define a laminated plate that exhibits a set of twelve given lamination parameters. The
“degrees of freedom” are here the ply angles and one can a priori expect to find a solution
with twelve plies at least. Hence, the optimization programme has first been run with required
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lamination parameters set to zero and with some numbers of plies lying between 7 and 18.
The minimum of  the objective function found in each case is reported in Fig. 2.
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Fig. 2 : Minimum of the objective function F vs. n, number of plies.

As expected, the minimum of the objective function decreases as the number of plies
increases and becomes very close to zero when this number is greater or equal to 12. The
corresponding stacking sequence found in the particular case n=12 is reported in Table 1 (#1).
The main conclusions are:
- the ply orientations are not standard and different. Note however that these angles can be

approximated to their “nearest” angle multiple of 5° without strongly changing the
mechanical properties [7];

- the stacking sequence is not symmetric even though the corresponding plate is uncoupled;
- since the present properties are geometric, it can be checked for any constitutive material

that both A* and D* stiffness matrices exhibit isotropic properties while the B* matrix is
zero;

- this result is approximated (very small residual terms instead of zeros in the B* matrix for
instance) because of the numerical nature of the procedure;

- n=12 is three times lower than the exact solution shown in Ref. [3]. Moreover, other
solutions are available for each value of the ply number greater than 12 [7].

Homogeneous orthotropic plates

The design of homogeneous orthotropic plates is addressed in this section. The case n=12 is
considered. For such plates, the design points QA and QD are the same and can be located
anywhere in the design area. Only some particular plates characterized by some properties of
symmetry are presently shown. In the first example, A2V and D2V are set to zero. The two
remaining lamination parameters are equal and set to a particular value to illustrate the
approach: 4.0VV D1A1 == . The stacking sequence found is shown in Table 1 (#2). The
conclusions are the same as in the preceding example: the laminate is not symmetric and the
ply angles are different and not standard.



In order to assess the accuracy of the optimization programme, the actual lamination
parameters of the stacking sequence found have been computed: V1A = 0.3993, V2A = 0.4029
and the ten remaining lamination parameters are less than 6x10-3. As can be seen, the actual
parameters are very close to the expected ones.

# A1V A2V D1V D2V In-plane
property

Bending
property

Stacking sequence

1 0 0 0 0 isotropy isotropy [0 59 107 129 50 130 178
78 179 21 69 128]

2 0.4 0 .0.4 0 orthotropy orthotropy [13 133 62 163 169 24 28
174 111 145 46 177]

3 0 0.4 0 0.4 square
symmetry

square
symmetry

[96 34 167 160 87 3 86 119
16 56 98 170]

4 0 0 0.4 0 isotropy orthotropy [18 143 76 157 28 107 86
55 104 143 34 172]

5 0.4 0 0 0 orthotropy isotropy [97 159 31 35 154 152 27
187 175 174 121 53]

6 0 0 0 0.4 isotropy square
symmetry

[87 11 152 124 51 25 63
164 121 112 65 2]

7 0 0.4 0 0 square
symmetry

isotropy [32 96 162 153 84 90 5 18
94 18 76 141]

Table 1: Examples of some particular orthotropic plates. The eight remaining lamination
parameters are zero.

In the third example, only the D1A1 VV =  parameters are set to non-zero values:
4.0VV D1A1 == . It can be checked that both the in-plane and bending properties of such a

plate are the same and exhibit a square symmetry. The staking sequence found is given in
Table 1 (#3).

Heterogeneous orthotropic plates

The usual so-called quasi-isotropic laminates exhibit isotropic elastic properties whereas the
bending properties do not have any particular properties. It is shown through the fourth
example that quasi-isotropic plates can be orthotropic with respect to the bending properties.
In this example, the required lamination parameters A1V  and D1V  are set to zero to obtain
in-plane isotropy whereas D2V is set to a different value: 4.0V D2 =  to obtain different in-
plane and bending properties. The stacking sequence found is given in Table 1 (#4). Since

4.0V D2 =  and 0V A2 = , it can be checked that this fourth plate has the same bending
properties as the plate in the second example.
In the fifth example (#5 in Table 1), in-plane and bending are inverted with respect to the
fourth example. As a result, in-plane properties are orthotropic whereas bending properties are
isotropic.
The sixth example (#6 in Table 1) is similar to the fourth one: in-plane properties are isotropic
whereas bending properties exhibit a square symmetry. It can be checked that this plate has
the same bending properties as the plate in the third example.
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Fig. 3: Polar plot of A*11 (solid line), D*11 (dashed line) and B*11 (at the center) for various
stacking sequences, in Gpa.

In the seventh example (#7 in Table 1), in-plane and bending properties are inverted with
respect to the sixth example. As a result, in-plane properties exhibit a square symmetry
whereas bending properties are isotropic.



Polar plots on some stiffnesses

The above results are illustrated in Fig. 3 with some polar plots of three normalized
stiffnesses: *

11A , *
11B  and *

11D . The constitutive material is a carbon/epoxy which elastic

properties are taken in Ref. [1]. As can be seen, the *
11B  polar plot reduces to a point in the

three first examples. This clearly shows that the three corresponding plates are uncoupled. In
the last example however, the *

11B  plot is no more a point. This is due to the fact that the
design point QA has been chosen in the vicinity of the bound of the design area. As a result,
one cannot reach exactly the desired properties [9]. In the two first cases, both *

11A  and *
11D

plots cannot be distinguished to the naked eyes. This illustrates the homogeneity of the plates.
In the first example, these two polar plots are a circle. This is a consequence of the in-plane
and bending isotropic properties of the plate. Finally, it can be seen that both in-plane and
bending properties have been inverted in the two last examples.

Plates with different in-plane and bending orthotropy axes

In the above examples, both in-plane and bending orthotropy axes are the same. However, one
can also easily design orthotropic plates with different in-plane and bending orthotropy axes.
For instance, let us consider that the orthotropy axes are the reference axes. If one wishes to
design a plate similar to the second plate in Table 1, but with orthotropy axes rotated through
an angle α between in-plane and bending properties, the only non-zero in-plane lamination
parameters is A1V  and the required lamination parameters governing the bending properties
must be chosen as follows [9]

α=α= 2sinVV,2cosVV A1D3A1D1 (4)

As an example, the programme is run with the above required parameters that have been
computed in two particular cases α = 30° and α = 45°. Results are shown in Table 2 and in
Fig. 4.

# α A1V D1V D3V In-plane
property

Bending
property

Stacking sequence

8 30° 0.4 0.4

2
1×

0.4

2
3×

orthotropy orthotropy
(30° rotation)

[61 9 132 16 179 151 21
151 132 178 68 24]

9 45° 0.4 .0 0.4 orthotropy orthotropy
(45° rotation)

[66 21 131 14 169 7 154
152 138 21 22 74]

Table 2: Examples of two orthotropic plates with orthotropy axes rotated from each other. The
nine remaining lamination parameters are zero.
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Fig. 4: Polar plot of A*11 (solid line), D*11 (dashed line) and B*11 (at the center) for various
stacking sequences, in Gpa.

The orthotropy axes clearly appear in both cases in Fig. 4. These two examples show that a
wide freedom exists in the design of laminated plates using the present approach.

CONCLUSION

The main features of a procedure allowing the design of thin orthotropic plates verifying
required elastic properties are described in this paper and several examples illustrate the
relevance of the approach. In general term, the idea is to built up an objective function with
the twelve lamination parameters describing the required properties and to minimize this
function with respect to the ply angles that are considered as continuous. The main
conclusions of the paper are:

- the particular case n=12 plies has been studied because twelve constraints have been
considered: the twelve required lamination parameters. A solution has been found for each
of the examples. In a more general study [9], it is shown that no simple general rule can be
obtained concerning the minimum number of plies of a laminated plate verifying required
elastic properties since this number depends on the value of the twelve required
parameters;

- the solutions found are not symmetric even though the plates are uncoupled. This
illustrates the fact that the condition of symmetry is sufficient and not necessary even
though most of the usual laminated plates manufactured are symmetric;

- the particular properties highlighted in this paper are geometric and independent of the
constitutive material of the plies;

- the ply orientations are not standard and different from one ply to another. This is probably
the main drawback of the present approach but if seems that it is the price one has to pay
to obtain required elastic properties with such a low number of plies;



- it seems that most of the particular properties of the thin laminated plates shown in this
paper have not been obtained with usual standard design rules until now.

Some of the above properties could be considered as academic only. However the control of
the stiffness properties of composite structures is of prime importance in many optimization
problems and the above examples show that this optimal properties can be easily controlled
with the procedure presented in this paper.
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