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SUMMARY: Elastic scaling behavior of a continuous anisotropic fractal, 2D Sierpinski
carpet, is the subject of the study. In the case of porous in elastic matrix, P. Sheng and R. Tao
[4] and S. A. Patlazhan [5] have found that axial and shear moduli of the carpet exhibit
distinct scaling with the size of the system. However, it is widely accepted that different
stiffness of isotropic fractals scale with equal exponents. The nature of such discrepancy has
remained unclear. Using numerical position-space renormalization group technique, we show
that different stiffness of the carpet also scale with equal exponents. In particular, it means
that both in the cases of porous and rigid inclusions fractal Poisson ratio has non zero values
independent of matrix moduli. Difference in the values of scaling exponents obtained in
previous study is caused by analysis of the initial fractal generations.
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INTRODUCTION.

The elastic properties of isotropic fractal structures (regular or random) have been studied
since 1984 [1-5]. In particular, it was shown [2,3] numerically in the framework of discrete
spring-based models that stiffness C of rigid percolation clusters (random fractals) above the
elasticity threshold exhibit power-law (scaling) behavior with the size L of the system:
C L∝ −τ . Also, it is widely accepted that percolation clusters are isotropic fractals, and
different components of effective stiffness tensor C scale with the same exponents.

P. Sheng and R. Tao [4] first investigated elastic scaling behavior of a continuous anisotropic
regular fractal - the 2D Sierpinski carpet (Fig. 1). In the case of porous in an elastic matrix
(elastic problem), calculation of effective moduli was based on an iterative solution of the
Dyson equation for elastic wave scattering in a heterogeneous media. Due to the square
symmetry of the carpet, three moduli determine tensor C. It was found that axial [8], C11,
C11−C12, and shear, C44, moduli exhibit scaling behavior with corresponding exponents:

τ τ τ1 2 30 27 0 25 0 46≈ ≈ ≈. , . , . . (1)

Using different approach, S. A. Patlazhan [5] has obtained another estimates of the same
exponents:



τ τ τ1 2 30 25 0 26 0 33≈ ≈ ≈. , . , . . (2)

In the case of rigid inclusions (superelastic problem), scaling law C Ls∝  was found, but with
equal exponents:

s s s1 2 3 014≈ ≈ ≈ . . (3)

It follows from qualitatively consisted estimates (1) and (2) that, contrary to the isotropic case,
axial and shear moduli of the Sierpinski carpet exhibit distinct elastic scaling behavior. The
nature of such discrepancy has remained unclear. However, it was proposed [4] two possible
origins. The first one is in the square symmetry of the carpet. Another contributing factor may
be the breakdown of analogy between the discrete and continuum elasticity.

Several important questions have arise from previous study. In both papers, linear
log(C)−log(L) dependencies were obtained for the three initial generations of the carpet under
the unique value of the matrix Poisson ratio ν = 0.2. However, the scaling elastic response
should be expected at large L. Whether the same scaling would be asserted for the developed
fractal structure? Would it be varied with the host parameters?

Recently [6], we have computed tensor C for the three initial generations of the carpet
numerically, using the finite element method (FEM). It was found that: (i) the exponents
depend on ν ; (ii) the linearity of log(C)−log(L) dependencies is broken as matrix approaches
to the limit of incompressible media with ν close to unity [9]. So, we must conclude that
estimates (1) and (2) obtained for the initial fractal generations are determined by specific
relations between matrix moduli and may be inconsistent at large L.

Unfortunately, direct FEM-based calculation is not applicable at large L because of computer
memory and time consuming. Construction of the position-space renormalization group
(PSRG) transformation and its application for analysis of scaling behavior of 2D Sierpinski
carpet elastic moduli at large L is the subject of the paper. An idea of the PSRG
transformation is in the substitution of effective moduli of a finite fractal generation back into
the same generation as the matrix moduli. This procedure was suggested, but not performed in
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Fig. 1.
The three initial generations of a Sierpinski carpet. The size L of the system is defined as the
ratio of the side l of the outer square to the minimal thickness a of the matrix and is
determined by the number n of the generation: L = l/a = 3n.



the paper [4]. To do this, effective matrix should be regarded as an elastic continuum
complied with the same square symmetry as a finite generation of the carpet. If this condition
is satisfied, the transformation can be iterated as far as necessary. Therefore, arbitrary size of
the fractal can be analyzed. We have found that both for elastic and superelastic problems the
PSRG transformation has corresponding stable fixed points, ( )Pe e e

∗ ∗ ∗= Σ Α,  and ( )Ps s s
∗ ∗ ∗= Σ Α, ,

on a plane of the effective Poisson ratio

Σ = C C12 11 (4)

and coefficient of anisotropy

( ) ( )Α = −C C C11 12 442 . (5)

An existence of the finite fixed points provides a common scaling for different components of
tensor C with exponents independent of  matrix mechanical properties: τ ≈ 0.29 and s ≈ 0.17.

The rest of the paper is organized as follows. The description of the PSRG transformation
forms a content of the next section. The results of simulations are discussed in the final part of
the paper.

PSRG TRANSFORMATION.

Let us define dimensionless size L of the system as a ratio of the side l of outer square to the
minimum thickness a of the matrix (Fig.1). It is determined by the number n of the fractal
generation:

L la n= =3 . (6)

Following the definition (6), the size of the homogeneous square without inclusions (n = 0) is
equal to 1. So, we denote initial stiffness tensor of matrix as C(1).

The FEM code elaborated in the paper [6] under assumption of isotropic matrix (Α = 1,
independent C11 and C44) was used for computation of components C11, C12 and C44 of
effective stiffness tensor C(L,C(1)) at L = 3, 9, 27 and 81. (Below, where it is not lead to
ambiguity, the second argument will be dropped, i.e. C(L,C(1)) = C(L)). In that case, we can
define transformation fn mapping matrix moduli on effective moduli of the nth fractal
generation:

( ) ( )( )C f C3 1n
n= . (7)

Unfortunately, the transformation (7) does not conserve the isotropy of C and thereby cannot
be iterated. Generalization of the FEM code on a matrix complying with the square symmetry
(independent C11, C12 and C44) allows us to define PSRG transformation fn induced by the nth
generation in the form suitable for iterations. :

( ) ( )( )C f C3n
nL L= . (8)

According to the definition (8), numerical PSRG technique consists in the following. Given
arbitrary values of initial matrix moduli C11(1), C12(1) and C44(1), we apply the FEM code for
computation C11(3n), C12(3n) and C44(3n). Then we repeat computation of effective moduli of



the nth fractal generation using the components of previously obtained tensor C(3n) as the new
matrix moduli. As a result, we obtain tensor C(9n). This homogenization procedure may be
continued until arbitrary preassigned value of L will be reached. After k iterations, tensor
C(3nk) effectively accounts an influence of inclusions of the size less than L = 3nk. A scheme of
the procedure described is illustrated on Fig. 2 at n = 1 .

Obviously, the result of the PSRG technique application should be dependent of the two
parameters. Accuracy of numerical method is the first one. This factor can be excluded by the
choice of sufficiently large FE mesh, which is supposed to be done. The second parameter is
the level n of the transformation (8), which cannot be excluded and seems to be important. For
example, C(9) can be approximated using maps f1:

( ) ( )( )( )C f f C9 11 1= , (9)

or f2:

( ) ( )( )C f C9 12= . (10)

It is not a priori known whether the left sides of the Eqns. (9) and (10) are close to each other.
This problem will be discussed in the next section on the basis of the numerical data obtained.

Due to the infinite ratio between stiffness of matrix and inclusions, right side of Eqn. (8) is a
homogeneous function of order one for both elastic and superelastic fractals:

( ) ( )f C f Cn nα α α= , .forarbytraryreal (11)

Condition of homogeneity (11) and definitions (4) and (5) allow us to define reduced map rn

in a plane of the Poisson ratio Σ and coefficient of anisotropy Α:
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where (rn)Σ and (rn)Α are given throw components of the map fn:
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Fig. 2.
 One step of the PSRG transformation (8) induced by the 1st fractal generation.



Existence of the finite fixed point ( )Σ Αn n
∗ ∗, of map (12):

( ) ( )Σ Α Σ Α Σ Αn n n n n n n
∗ ∗ ∗ ∗ ∗ ∗= ≠ ∞ ≠ ∞, , , , ,r 0 0and , (14)

and equality ( ) ( )Σ Α Σ Α(), () ,1 1 = n n
∗ ∗  provide size independent stiffness ratios and exact

scaling law for effective moduli:

C L C Ln ns∝ ∝−τ  or , (15)

where the universal exponents τn  and sn  are given by the formula:

( ) ( )( )
τn n

n n
s

n
,

lg

lg
=

∗f C
11

3
, (16)

and independent components of Cn
∗  are determined by stiffness ratios corresponding to the

fixed point: ( )Cn
∗ =

11
1, ( )Cn n

∗ ∗=
12

Σ , ( ) ( ) ( )Cn n n
∗ ∗ ∗= −

44
1 2Σ Α .

It will be shown below that rn is a contraction map. This implies convergence on (Σ , Α) plane
of the iterative procedure described above:

( ) ( )( ) ( ) ( )( ) ( )rn
k

n nL L k LΣ Α Σ Α Σ Α1 1, , , , ,= → → ∞∗ ∗ , (17)

and asymptotic validity of scaling law (15) for arbitrary initial matrix moduli.

RESULTS AND DISCUSSION.

Unique fixed point values ( )Σ Αn n
∗ ∗,  of the rn have been found for every tested level n.

Obtained results are summarized in Table 1.

Convergence (17) of the flow diagrams of iterated map rn has been checked by numerical
analysis in wide range of initial matrix values both for elastic (Fig. 3a) and superelastic (Fig.
3b) fractals.

Table 1.
Fixed points of the map (12) and corresponding exponents (16).

Elastic fractal
n 1 2 3 4
Σ∗ 0.075 0.069 0.066 0.066
Α∗ 3.02 3.77 4.23 4.33
τ 0.298 0.296 0.291 0.284

Superelastic fractal
n 1 2 3 4
Σ∗ 0.103 0.085 0.075 0.064
Α∗ 2.42 2.97 3.33 3.70
s 0.176 0.170 0.168 0.169



Near fixed point, contraction property of the rn was directly proved by its linearization:

( ) ( )r Rn n n n

n

n

Σ Α Σ Α
Σ − Σ
Α− Α

, ,− ≈






∗ ∗

∗

∗ , (18)

and computing of eigenvalues, λ1, λ2, and corresponding eigenvectors, e1, e2, of the linearized
map Rn. The results of the analysis for n = 2  (Fig. 3) are given in Table 2. It is seen from Fig.
3 and Table 2 that contraction condition 1> λ1≥ λ2  is satisfied and flow diagrams tend to
the eigendirections corresponded to the maximum eigenvalues.
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Fig. 3.
 The flow diagrams of iterated maps r2 (12) (solid lines) for elasic (a) and superelastic (b)
fractals and corresponding eigendirections of the linearized maps R2 (18) (dotted lines).



As it was already mentioned in the previous section, existence of the fixed point and
contraction property of the rn provide not only convergence (17) in the ratio plane, but also
universal asymptotic scaling law (15). Validity of the last was directly checked by drawing of
log(C)−log(L) plots (Fig. 4). It is interesting to note that linearity of the plots is almost valid in
the hole range of the sizes including small ones in the case of Σ(1) = 0.2, A(1) = 1 (Fig. 4a).
This feature was found and discussed in the first publications [4,5], concerning elastic scaling
properties of the Sierpinski carpet of initial generations. However, linearity of the initial
portions of the plots does not hold for Σ(1) = 0.8, A(1) = 1  (Fig. 4b). The reason of such
difference is caused by the different distance from matrix values of the ratios to that of the
fixed point, which is much less in the first case (see Fig. 3a). In particular, inequality
C44 > C12, which is a case of fixed point, holds for Σ(1) = 0.2, but becomes opposite if the
matrix becomes close to incompressible media.
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Fig. 4.
The log(C)−log(L) dependencies of elastic carpet. Matrix Poisson ratio Σ(1) = 0.2 (a) and
Σ(1) = 0.8 (b). In both cases, matrix coefficient of anisotropy Α (1) = 1.

Table 2.
Eigenvalues, λ1, λ2, and eigenvectors, e1, e2, of
linearized maps R2 (18) for elastic and superelastic
fractals.

λ1 e1 λ2 e2

Elastic fractal
0.76 (-0.02,1) 0.52 (0.37,-0.93)

Suprelastic fractal
0.9 (-0.03,1) 0.8 (0.46,-0.89)



Naturally, the limit n → ∞, which corresponds to the infinitely developed fractal sets, is
interesting. These limit have been estimated by 2-power polynomial approximation of the
numerical data of Table 1 with respect to ε = 1/n and ε = 1/lg(n) (Table 3). There is seen
certain discrepancy between the estimates obtained by the different approximations. The data
on larger iteration level n is necessary to define exponents more exactly. However, the

divergence is small, so data of Table 2 can be used as rough estimates.

It is attractive to assume that scaling properties of the fractal are primary determined by the
dimension of the set and thereby to estimate the exponents for elastic and superelastic
percolation problem on the basis of the results obtained for regular fractals. Let us use
Sierpinski carpet as a model of percolation cluster for the speculation suggested. Size L of the
system is related to the matrix volume fraction p(m) as Ld/LD=L(d−D), where d = ln8 / ln3 and
D = 2 be fractal and configurational dimensions, correspondingly. It is widely accepted that in
the neighborhood of percolation threshold pe elastic or superelastic behavior of highly
disordered system is mainly determined by the properties of rigid or soft infinite cluster. If one
supposes that fraction p(m) of the matrix in fractal is proportional to p pe− , then elastic, T,

( )C p pe
T

∝ − (19)

and superelastic, S,

( )C p pe

S
∝ −

−
(20)

exponents can be estimated on the basis of the data of Table 3:

T
D d

S
s

D d
≈

−
≈ ≈

−
≈

τ
255 15. , . (21)

Sure, much more convincible arguments should be done to ground the estimates (21).
However, the relation T > S, which holds [1-3,7] for 2D disordered elastic systems, is also
supported by simulations on regular elastic and superelastic fractals - 2D Sierpinski carpet.

Table 3.
Estimates of scaling exponents and fixed point values for 2D

Sierpinski carpet.

Elastic fractal
Limit τ Σ ∞

∗ Α ∞
∗

ε = 1/n 0.284 0.0651 4.43
ε = 1/lg(n) 0.267 0.0621 5.06

Superelastic fractal
Limit s Σ ∞

∗ Α ∞
∗

ε = 1/n 0.168 0.063 3.74
ε = 1/lg(n) 0.167 0.035 4.71
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