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SUMMARY: A structural synthesis  is made for FRP shell structure that does not buckle
under axial load, and is stable up to compressive failure. A multi layer shell construction
with defined non-geodesic filament orientation and shell wall thickness is determined.
From equilibrium and stability requirements the shell surface turns out to  be warped or
to possess negative Gauss curvature K. They have zero  normal curvature for the
directions in which reinforcements run. The definition of isometric deformation is seen as
shell bending. Hyperbolic geodesics introduced in this paper are in accordance with
Gauss Egregium Theorem and are seen essential to  the structural  stability of thin walled
shells. It is  viewed as a stability criterion. Generalized   Mohr’s circles are drawn to
depict changes in curvature during isometric bending. Initially finite element analysis of
reticulated pseudospherical shell is carried out. A multi-layered FRP shell made of high
modulus graphite composite has  high  resistance to buckling ,with stress at buckling
highest so far obtained. The design of pseudosphere derived from static equilibrium and
stability defined here is independant of length to maximum diameter ratio This size
independance  is theoretically built into synthesis and   as well  verified by analysis.

KEYWORDS: Bending, Isometric invariance, Theorema  Egregium,  Hyperbolic
geodesics,  Negative Gauss curvature, Asymptotic directions, Pseudosphere,  non-
Euclidean hyperbolic geometry ,Generalized  Mohr’s circle for isometric bending,
Tschebycheff net,inverse isometry.

1. INTRODUCTION :

 When glass bottles break, bottlenecks are almost intact. Spinal cord bones have a narrow
waist, same shape prevails from big thigh bone to smaller  phalanges of hand or toe.
Nylon shopping net bags and fishing nets  assume a warped surface in free areas when
loaded, filaments having no normal curvature on net surface. Soap bubble films freely
drawn between two rings exhibit a negative curvature by membrane tension. A flat strip
becomes stiffer  after twisting it  plastically into a  helicoid. These and several such
examples make one ponder  that , after all, there could be some natural economy in
material usage in such shapes for optimally balancing buckling instability which gets
triggered  as bending at elemental structural level.



2.1  Structural Synthesis of shells:
The method incorporates the geometrical basis of bending in classical surface theory in
differential geometry in an attempt to establish it for removing bending that causes
buckling instability. It emphasizes not what varies, viz. normal curvature, but what does
not vary viz.  geodesic curvature kg and Gauss curvature K, for .incorporation  as
essential structural objects obtaining geometric nonlinearity and large deformation
advantages
2.2 Design of filamentary axisymmetric pressure vessels
This is briefly  reviewed, as  similar synthesis procedure is used. We consider a doubly
curved differential shell element. Fig (1).

Here winding angle LPQ=ψ  and angle PLM=φ , slope of meridian.
Pressure equilibrium normal to shell              N/R1 +Nο/R2 = p        (1)
Membrane stress resultants        Nφ = pR2/2,   Nθ= pR2(1 – R2/2R1)           (2)
Here p is the pressure, Nφ, Nθ  are the stress resultants along meridional  and hoop
directions, R1 and R2 are principal radii of curvature .  We employ netting theory.
Although from an analysis viewpoint netting theory is held to be to too general or
simplistic, from  a synthesis viewpoint  it has some advantages. It captures the essential
directed load bearing reinforcements, their size and direction, discarding the negligible
shear contribution of resin. Netting theory directly depicts a pure membrane and funicular
state of stress of a single balanced layer that lends itself to imposition of appropriate
stability criterion and uniform stress by simple static equilibrium.
If NS is the stress resultant along fiber arc s and ψ the  winding angle between filament
and meridian,
Nφ= NS cos2Ψ, Nθ= NS sin2Ψ, Nθ/ Nφ = tan2Ψ        (3)
Combining Equns  (2) and (3) we have                           R2/R1 = 2- tan2Ψ        (4)
To define winding angle Ψ, we employ geodesics in filament winding which have zero
geodesic curvature or curvature in the tangential plane given by Liouville’s formula for
surfaces for revolution. These are zero slip stable lines suitable for normal to the laminate
pressure loading and processing by filament winding.
kgE= +dΨ/ds + sin φ  sinΨ / r = 0        (5)
On integration we get     r.sinΨ = rOE = constant        (6)
This is Clairaut’s Law for geodesics on surfaces of revolution. Here, r  is the shell radius.
The subscript E, stands for elliptic, explained later . Shortest lines on convex  surfaces eg.
great circles on spheres and helical lines on cylinders are examples. Combining  Equns
(4) and (6) we obtain required shapes and filament orientations  for the “geodesic



isotensoid ” in terms  of elliptic functions. Same cross sectional area of filament rovings
running between equator to boss opening  radius rOE is used  and this yields constant
stress along filaments.  Sufficiently  large number of layers are chosen to isolate bending
from stretching. We can employ any other type of  geodesic  in structural synthesis.
We employ the above derivation for synthesis of an axisymmeric  shell loaded between
two parallel  circles. No normal pressure or loading   acts. We introduce axial loads
through the skin so that direct bending of the laminated  shell by a normal load
component is  avoided .The loads are transmitted through the shell onto the other end.
From Equn (1), normal pressure p acting on the differential  element is zero.  Introducing
Equn (3) into (1) and , letting k1 =1/R1, k2 =1/R2, we have  k1 cos2Ψ +k2 sin

2Ψ =0      (7)
This is the Euler expression for normal curvature of a filament kn on a doubly curved
shell  that vanishes in this case unlike the geodesic-isotensoid . Zero normal curvature
lines are called asymptotic lines. Examples of asymptotic lines on some surfaces are:
(a) A typical saddle point Fig (2). . Parametric representation   (x,y,z) = f(u,v)
x= u cos v,  y= u sin v,  z= C.sin 2v.The second surface in Fig (2) has inflexion points at
center and such a surface was fabricated by Beltrami [ 1]

 (b) Straight skewed generators on a one sheet hyperboloid of revolution,
 r2-z2tan2α=a2,  x =a tanh , y=a, z = a tanθ/tanα,  α is inclination between generator and
z-axis.; r  and θ are parameters
(c)  Hypar or hyperbolic paraboloid surface 2z = x2/a2 _  y2/b2 ;   x/a ± y/b = constant, are
generators,  set of parallel line projections  inclined at tan -1(b/a) to x- axis. Parametric
representation (x,y,z) = f(u,v)  is
   x = a (u+v)    ;  y = b(u-v)      ;     z = 2uv;
(d) Curved asymptotes with constant winding angle 450 to the principal curvature
directions on a catenoid of revolution; r = C cosh (z/C) , where C is the minimum
distance of catenary to z-axis of symmetry. This holds for all surfaces of zero mean
curvature or minimal surfaces which are physically seen as soap bubble films possessing
no bending rigidity .
3.1 Hyperbolic curvature and hyperbolic geodesics
Liouville’s formula ([2],pp154) for geodesic curvature is given by
kgE=   + dΨ/ds+ cos ψ (kg)v=const + sinψ (kg)u=const                                                            (8)
where right hand side kg are functions of E,F,G and their derivatives with respect to
parameters u and v of first fundamental form introduced later.
In polar coordinates for axisymmetry, + dΨ/ds + sin φ  sinΨ / r = 0 for geodesics
Integrating this we get r.sin ψ=roE=constant, which are straight  lines.
In this paper  we define hyperbolic curvature by simply changing the sign of ψ in
Equn (8),and justify such a change from inversion



kg E,H=  ±  dψ /ds + sinφ sinψ/r =0 (+ for Elliptic, - for Hyperbolic)   
kgH=  - dΨ/ds + sin φ  sinΨ / r = 0
Integrating this we get r/sin ψ=roH=constant,  circles through origin    (9)
This is also obtained by putting  r  in place of roE.roH/r  as a process of inversion of
complex variable conformal transformation w=1/z .We represent in Fig (3) both the types
of geodesics in two dimensions.. Rectilinear triangle abc in elliptic model is inverted to
curvilinear triangle ABC in a hyperbolic model. The sense of rotation is  changed .Radius

of circle or mirror of inversion =(roH.roE)1/2 .and  yE � 6 -yH

.It is difficult to accept the hyperbolic model in two dimensions as there is no Euklidean
counterpart ([3],pp 275).The definition of geodesic curvature is dependant only on the
coefficients of the first fundamental form and is an intrinsic bending invariant property in
either case.
Also the metrics of the above cases in two dimensions are:
ds2=dr2+(rdθ)2 and    ds2=[dr2+(rdθ)2]/r4 , inverted to a unit circle.
Arc lengths should be extremized in each case to be a geodesic We use Euler-Lagrange
equation in Calculus of  variations approach.
Functional in each case is    F= (r2+r’2)½   and F= (r2+r’2)½ /r2

 When F is independent of θ , F-r’∂F/∂r’=constant . Performing the integration for
Euclidean/Elliptic case we have  r sinψ= constant =roE. Likewise for hyperbolic case we
get r/sinψ= constant= roH.
As  ds = rdθ /sinψ  we have (sinφ ± dψ/dθ)=0 ; Integrating  ψ±θ sinφ   = ω                (10 )
where arbitrary constant ω  is the constant angle turned in the tangent plane.
 For flat Euklidean geometry φ =π /2 ,  z=y ± θ                ( 11)
All angles are consistently measured counterclockwise positive, from radius vector
towards elliptic/hyperbolic arcs. In elliptic geodesic,zE  constancy means that y+h is
the same angle for the straight line Ee in Fig (3),right. In hyperbolic geodesic,zH



constancy means that y-h is the same angle contained in the “straight line” segment
OHh .
3.2 Elliptic and Hyperbolic curvature of a circle in two dimensions
Constant elliptic/euklidean curvature forms a circle. We look at  a curve of constant
hyperbolic  curvature defined here.
For a circle in two dimensions in x-y plane we have relations
sin ψ /r = (1-T2/r2)/2a  ; dψ/ds = (1+T2/r2)/2a  ;T2=h2-a2 ( tangent squared or power)   (12)
 adding and subtracting  kgE=1/a   ;  kgH= (a-h2/a)/r2                                                       (13)
Curvatures in polar coordinates are expressible as (primes  with respect to θ )
kgE=(r² +2r’² - rr’’)/(r ² + r’²)3/2  ;  kgH=r (r+r’’)/(r ² + r’²)3/2                   (14)
which have geodesic solutions r=roEsec( θ+ α )  and r=roHcos( θ+ α ) ,0                       (15)
where  roH, roE,α , are all easily recognizable constants in Fig (3)
Thus kgE is independent of position , Hyperbolic curvature is position dependent for an
arc of a circle. It is positive, zero or negative depending on whether the origin is
enclosed, lies on the rim or outside the circle. Fig (3),right.. Some curves of constant
positive and negative kgH are given in Fig (4) for same boundary conditions.

3.3  Justification to consider vanishing kgH as geodesics in this paper
First  justification for considering these hyperbolic lines as geodesics comes from an application
of Gauss-Bonnet Theorem [2],[3] considered for both cases.
° kgE or H  ds + ° ° KdA +S (π -a) =2 π
Hazzidakis theorem ([2],pp 204,prob 17 and  [3],pp237, prob 15).deal with a variant of Gauss-
Bonnet theorem. The area of a quadrangle enclosed between four elliptic  geodesic arcs is (angle
sum- 2π) or twice the spherical excess of a  geodesic triangle. By the theorem of Hazzidakis when
this is formed between lines on constant negative K can be regarded also as another type of
geodesics. Secondly, this has also been demonstrated by Beltrami,([2],pp152) but with  reported
difficulties at edge of regression or cuspidal equator.Thirdly, asymptotic lines on constant
negative K are found to form a Tschebycheff net, the same result arrived at by incorporating
present hyperbolic geodesics.[2],(pp204,prob 15).Fourthly, following article 5.3 demonstrates
that Egregium Theorem as asymptotic lines on constant negative K, the same equals (2π -angle



sum). Thus asymptotic a stability theorem of bending invariance only on the assumption of
validity of the hyperbolic geodesics. The fifth justification comes from a simple experiment with
a nylon shopping bag,like one in Fig(8) bottom. .It has knots on it at regular filament spacing and
assumes a definite shape on loading. The distance between nodes ds and polar separation dh of
rhombic cells  are constant by knitted construction of vented bags. Thus, ds/dh is a constant.
This for each cell or differential shell element equals r/siny. On flattening the bag to draw
filaments to center,they arrange themselves as  circles passing through the center with constant
radius r/siny=roH. It is noticed that after a small load, filament  stress  transmitted through the
knots increases in that stable configuration, large  bending deformations having stopped in
proportion. The stable shape is from  a pseudosphere family, shown later.

4.1 Models of hyperbolic geometry
There are 3 models of hyperbolic geometry due to Klein, Poincaré and Beltrami. The present
model is nearest to Beltrami model in which there appears a  limitation  for drawing geodesic
triangles near to the cuspidal edges. In Fig (5) and Table 1 present model is compared with
Poincaré model.

.Table 1  Comparison of  hyperbolic geometry models in two dimensions
Euclidian /Elliptic model Poincaré  model Present Polar model

Geodesic is a straight line Geodesic is a semi circle Geodesic is a full circle through
origin

Lines  go to infinity if
continued on either side

Lines  go to x axis if continued Lines go to origin if continued

Points at infinite distance are
indefinite

Points at infinite distance  are on the
x axis

Points at infinite distance  are at
the origin

Only one straight line
possible through any two
points

Only one semi circle possible
between any two points

Only one circle through any two
points. The third point is the
origin.

Two straight lines are parallel
if they have a common point

Two semicircles touching the x axis
are parallel although intersecting

Two full circles are parallel if they
have a common tangent at origin



at infinity
Only one line parallel to a
given line through outside
point

Two semi circles possible as
parallels from an outside point with
common semicircle tangency.

Only one full circle possible to a
given circle with common tangent
at origin

If a line intersects two parallel
lines, the alternate angles are
equal

The alternate angles got by cutting
two parallel semi circles are not
equal

When a circle intersects two
parallel circles alternate angles are
equal

Metricds2=dx2+dy2

Or ds2= dr2+(rdθ)2
Metric ds2 = (dx2+dy2)/(y/a)2 Metric

ds2 = (dr2+(rdθ)2)/(r/a)4

Physical analogy is a light ray
with constant speed

Physical analogy light ray with speed
proportional to y coordinate

Physical analogy light ray with
speed proportional to square of
radial distance from origin

Sum of three internal angles
is π

Sum of three internal angles  can be
anything

Sum of three internal angles  is  π

Inversion of hyperbolic model bilinear transformation of   complex
variable conformal mapping

Inversion of elliptic model

5.1 Generalized Mohr’s circle of curvatures in isometric bending for positive and  negative
K.
It is possible to depict normal and twist curvatures on the familiar Mohr circle. This has been
done in a comprehensive way, accommodating isometric bending in this paper.
Zero  normal curvature direction can occur only on negative K  surfaces demarcating positive and
negative normal curvature areas  .This is represented on the Mohr’s circle using power of co-axal
circles Fig (6) to include all possibilities by isometric bending .
On x-axis is normal curvature and on  y-axis twist curvature (or  geodesic torsion τg in differential
geometry parlance) is drawn.  Geometrically, the square of semichord or tangents from origins
equals of product of intercepts of  principal curvatures. As the shell or laminate gets bent to larger
values of k1/k2 with K=k1.k2 remaining constant as per Egregium theorem, a new Mohr circle
takes over, at a common point without changing  twist curvature or τg. At any instant ψ equals
tan-1(-k1/k2)1/2.The same is shown  for positive K in.Fig (6).
There is equal tangent length for all circles. Square root of Gauss curvature is represented by
common  τg intercept  for all circles with negative K and as equal length tangent drawn from
origin for all circles with positive K. Three circles at left represent negative, zero and positive
K=T² of Equn (12). As per [3], pp 276-279, these geodesics are orthogonal to a group of motions
in plane hyperbolic geometry.  Case of K=0 is coinciding with the choice made in the paper.



Physically, this can be demonstrated using a flexible hollow spherical rubber ball cut into two
equal hemispheres.  Diametrically opposite points of each half are squeezed together, bent and
rolled in until it assumes  a spindle shape of same constant K.  The surface is isometrically
deformed, that is to say, on application of bending and twisting moments, there is no stretching or
shear strain in the mid surface of  its round wall.
Although not so readily apparent, this holds also in bending of  negative K sheets of flexible
material. Several  books on differential geometry  deal with isometric mapping and first
fundamental form equivalence  between catenoid and helicoid, eg., [2], page 121. By a series of
bend-twist operations a catenoid can be deformed to a heliciod and vice versa. Take a flexible
catenoid , cut it along a meridian and apply simultaneously bending and twisting moments until
the nearest circle  r = C  becomes the straight twisted spine of helicoid . Meridians looking away
from center now align straight in the manner of motion of aircraft propeller blades cutting
through air in flight. Before bend-twisting principal curvatures were at 0,900 and asymptotes
along ± 450 After  bend-twisting, principal curvatures are along ± 450 and asymptotes at 0,90
degrees ,ie., there is a swap between the two directions. However, at any point K remains the
same. This example is classical, gives an initial mistaken impression that mean curvature H=0
remains the same in  isometry, as both the catenoid and helicoid are minimal  surfaces. It is not
invariably  so . The textbooks on differential geometry that could be accessed by the author do
not give isometrically twisted helical surface equivalents to the pseudosphere set, perhaps as it is
easiest  to calculate  surfaces of revolution.. But it can be calculated from Equn. (30) that follows
after  suitable u,v  parameterization is assumed.
5.2 Isometry depiction using Flexure Potential  and Distortion Function
The above bending phenomenon can be even more systematically depicted by using a complex
variable isometry function w for any curved surface. Let 1/a = (abs(K))½ = A, where a is  the
cuspidal radius of pseudosphere or spherical radius in case of constant K.
z=A coth(w/2) or w = ln [(A+z)/(A-z)] = (ξ+i g) where complex curvature z=kn+i τg  (16)
ξ circles are : (x-A coth ξ ).² +y ² =(A/sinh ξ ) ²                  (17)
g circles are : (x+A cot g  ).² +y ²  =(A/sin g ) ²                  (18)
from which circle center locations and circle radii are obtained. The ξ circles are Apollonius
circles with respect to poles, ξ=ln(r1/r2),where r1 and r2 are distances from points on Mohr circle
to the poles. The g circles contain constant angle g1 on the inter-pole chord.
Gauss theorem or other literature in isometry does not identify what varies in  isometry as a
single geometrical parameter for each Mohr circle at any stage of bending deformation. For this
purpose, the author introduces the above  ξ and g as Flexure potential and Distortion function
respectively, taking a cue from electrostatics and fluid dynamics. In the former there is electrical



flow between oppositely charged  poles, and in the latter, streamlines between source and sink in
irrotational flow. We have potential and stream functions ξ and g analogous to bending
deformation in a phenomenon. K being positive or negative  is observed even in curvature of
Space [8],where it is observed as relative “strain” of circumferentially surrounding matter.
We begin bending a synclastic spherical surface starting with equal curvatures  until one
curvature becomes too large compared to the other. This is represented by a pole growing towards
y-axis as a Mohr circle with same tangent length equaling   K½ .=1/a =A  .Each  Mohr circle has a
value ξ=ξ1 ; The principal curvatures are :
    k1= A. tanh (ξ1 /2)  and   k2= A coth (ξ1 /2), where  ξ1 = 2 [th-1(k1/k2)

1/2]                  (19)
Similarly we bend a saddle point with curvatures equal but opposite signs eg., soap bubble film
saddle point.  This is represented by a circle of radius  A with center as origin. As we squeeze the
laminate, the circle co-axially travels up or down, center remaining on y-axis, always passing
through the poles and retaining the same semi chord length A = 1/a. Each Mohr circle has a value
g. = g1,

- k1=A tan (g1/2) and k2= A cot (g1/2) , g 1= 2 [tan-1(-k1/k2)
1/2] = 2ψ at pole.                 (20)

These are depicted on a bipolar grid in Fig.(6).Complex curvature w can be slightly altered to
include 5 =0 for k1=k2 unbent state, but it is not included here .We see that ξ -g  space above
belongs to inextentional isometric deformation implied in text books of differential geometry.
The theorem of Beltrami-Enneper states that the twist curvature of a line on a given negative K
surface or geodesic torsion is simply √(-K), K need not be constant on the surface. Since the twist
curvature is same, Mohr circle of every bent laminate  must pass through this point.
A structural analysis to find strains and stress even on an isotropic material  cut catenoid
involves high geometric nonlinerarity on the scale of topology of flexible rubber membranes. It
would indeed  be an interesting problem to prescribe the right magnitude of bending and twisting
moments in modeling of the static problem with rotating forces along the edges, leaving K the
same at every load increment This problem would be a fine example of pure bending as per
notions of  inextensional  bending and isometry introduced  by Gauss, Beltrami, Bour and
Minding, when large deformation stress and deformation is computed for every increment of 5
or g
5.3  Incorporation of hyperbolic geodesics into equilibrium
From Equn (7) and (9) we get dφ /(dr/sin φ )/(cos φ /r) = tan2ψ = r2 /(roH

2-r2)
Integrating, cos²φ = (roH

2-r2 )/a² , where a is a new arbitrary but important constant.     (21)
differentiating the above, we get dφ/(dr/sin φ ) . (cos φ /r) = - 1/a2, or    k1k2 = K = -1/a2

we split roH into two factors a and µ , to  designate µ   as a dilation factor between maximum
cuspidal radii  of each pseudosphere of constant µ  value. roH = a µ          (22)
From (21) and ( 22) we get cos φ  = [µ  2 – (r/a)2]1/2                        (23)
From (23) and (9) we get   cos φ /cos ψ =µ                          (24)
Solving the equations k1 k2=-1/a2, k1/k2= -tan 2ψ  from Equn(7) we get
  k1=-tan ψ /a,  k2=cot ψ /a; intrinsic curvature  equations of pseudosphere  at any y    (25)
Eliminating   φ  between (7 ), (23 ) we get  back sin ψ /r =1/(a µ)  =1/ro              (9).
Likewise, it is possible to show that when constant K and hyperbolic geodesics are given, one
arrives at asymptotic lines.
Thus, assumption of the above hyperbolic geodesics with asymptotic character leads to a constant
negative K as our solution. The result coincides with Theorema  Egregium. which states that this
scalar is bending invariant. Hence, the constructed hyperbolic geodesics are valid isometric
invariants and are more  important in specifying direction  in fibrous composite design as Gauss
curvature K. A pseudosphere with meridional and hoop reinforcements is a wrong choice in
filament direction.
For central pseudosphere  µ  = 1, a closed form solution is
  φ = ψ , r = a sech θ =a sin v  , z = a (θ - tanh θ ), sin ψ / r = 1/a



The meridian is a tractrix which has a constant tangent  length  between point of tangency and z-
axis.It is also called pseudoradius([2],pp148). Some meridians are shown in Fig (7) for various
values of µ. Except the tractrix all are periodic.h is incremeted in equal steps of 6/n to obtain a
reticulated or discrete model .
The constitutive equations above can be also written :
(dψ/ds) 2 + cos2ψ / a2 – 1/roH

2 = 0;     s=a 3 F(3 ,6 /2-y) ; s=-a .log tan (ψ/2) or 3=1    (26)
and  d2ψ/ds 2 = K sin ψ. cos ψ ; an intrinsic (ψ - s) relation                    (27)
The synthesis yields a funicular thin-walled shell where load transfer between mutually
reinforcing filaments occurs at knots or nodes for a disretized reticulated structure and as
interlaminar shear between layers in a continuous balanced shell.

5.4 Tschebycheff net.  It is interesting, relevant and useful to find that above equation
(27) represents a net with filaments along asymptotic directions of constant negative
Gauss curvature K. Surfaces of flexible fishing net having same distance between knots is
taken and draped on the surface such that the filaments and knots lie along asymptotic
directions with zero normal curvature. An intrinsic relationship Equn (27) between ψ and
arc distance fits in exactly as above. Each rhombus distorts by scissoring action to form
neighboring cells in the Tschebycheff net. The pseudosphere  described in this report are
Tschebycheff nets.[ 2], page 204 prob. 15  for various µ  values.  Fig (8) shows three
pseudosphere types.



To design composite shells optimally it is seen that the quotient of principal curvatures
Equn (7)  is negative, so also is the product K.  We should therefore rule out cylinders,
cones (K=0 developable surfaces), and  synclastic surfaces (K>0)  from normal to the
shell equilibrium consideration. Only  negative K surfaces that too reinforced only along
the asymptotic directions. qualify to carry membrane loads. These are saddle shaped
points called also anticlastic as curvatures are in opposite directions along principal
orthogonal directions.
When the position vector [r] is described with respect to parameters u and v, there two
fundamental forms in surface theory:
I ds2         =  E du2 +  2F du dv + F dv2    ;                                                            (28)
II kn ds2   =  L du2 + 2M du dv + N dv2  ;
(29)
Here we introduce Theorema  Egregium . The remarkable theorem states that under
isometric or bending deformations, Gauss curvature K is invariant.  This  had been
demonstrated by Gauss. [9]. In the expression for double Gauss curvature

K =  (LN – M2) / (EG – F2),                (30)
the numerator has  coefficients L,M,N from the second fundamental form of surface
theory and is expressible in terms of E,F,G, the coefficients of the first fundamental form
and their derivatives with respect to surface generating parameters u and v in a
curvilinear coordinate system. The surprising aspect is, the determinant of second
fundamental form LN-M2 getting independent of L,M,N and depending only on E,F,G
and their partial derivatives. This justifies intrinsic stability of hyperbolic geodesics in
membrane state. Some quantities that remain invariant in isometry or isometric mapping
as they depend purely on the first fundamental form are : lengths, winding angle or
included angle between arcs, angle turned in tangential plane ∫kgds,∫∫KdA or integral
curvature (Integra Curvatura as nomenclatured by Gauss ), geodesic curvature of two



types, the second type is defined in this paper, Gauss curvature, geodesic torsion,
Christoffel symbols. In structural design and analysis parlance we can say that they do
not change by inextensional  deformations. That is, there is no midplane  extensional
strain including in-plane shear deformation.  The first fundamental form fully covers
shell membrane state of stress and strain and the second fundamental form covers the
bent state.
Some cosequences of this theorem : (1) Surfaces of positive or negative K cannot be
faithfully i.e.,isometrically mapped onto a plane without stretching ε  or shear distortion
c .When we step on an egg shell making it flat,circumferential cracks appear. It is
impossible to map features on the globe on a flat sheet without compromising on inplane
strains ε or c .(2) Direct or full  isometry is possible among surfaces of same constant K.
(Minding’s Theorem [2],pp 145).Hence, so long as there is bending, we may have widely
varying principal curvatures  k1 and k2, and external shape  but a constant product K , like
for example an inverse relationship between pressure and volume of an ideal gas at same
temperature.
Gauss theorem is also stated simply as K is an isometric invariant. In Fig (9) is seen a
netted construction in which for each rhombic cell length is same but not the element
angle, apparently a contradiction. Textbooks in differential geometry do not fully
illustrate direct and inverse isometry. In inverse isometry the question is asked that if K is
same on two surfaces, whether angles and lengths have to be the .same. It is in-plane
strain and bending of a single differential element that decides partial isometry. This
paper defines  the two circumstances  for which converse requirement is partially
fulfilled.. That is, if K is constant in a deformation , it does not necessarily mean that
there has been a strict dual (y-ds) invariant isometric corrospondence, which we can call
direct isometry. In bending,k1=-tany/a, k2=coty/a, normal curvature ratio k1/k2 changes,
K and other quantities from first fundamental form cannot change. We see in above Fig
(7) how change in local or differential shell element membrane dimensions can produce
global bending of the structure in three ways. In direct isometry (DI),  ds and y  are
constant ,(e.g., catenoid/helicoid –classical bending ). In inverse or partial isometry
defined here either ds or y is constant.  Retaining same rhombic or diamond cell lengths
ds through a dilation factor 3 , y changes by scissoring/shearing  action of a
Tschebycheff net,This is situation (II1) Whereas retaining  y conformally, but changing
ds (and rotations in principal planes, principal curvatures k1and k2 remaining same) with
magnification or contraction occuring  through a dilation factor 3, we have situation
(II2).This is shown for a square element (y =6 /4).It must be noted that applicability by
making one differential shell element to hug onto another one is possible only in DI mode
by bend-twisting, but not in II1 and II2 modes. The latter modes require the element to be
dilated or distorted to make element edges and corner nodes to fall one over the partial
isometric equivalent during draping action.

.
6.1 K changes by large in-plane circumferential strainingin a circular plate
Gauss Theorem stipulates no midplane straining  as long as K is invariant. By implication
midplane straining of laminate is associated with change in K. Let us see how this comes
about.



Circumferential straining  around a flat point  is the simplest way to change K. Take a
circular disc of radius R , circumferentially  strain it to adjust to large deformations Apply
a tensile plastic permanent parabolically varying circumferential strain +Kr2/6 by any
means. This produces a minimum surface area film saddle surface of radius 1/K in two
mutually orthogonal directions, as a potato chip.  Refer  first of Fig (2).  Gauss curvature
obtained is negative. Maximum tangential rotations are ± KR, along principal directions.
Now instead of tensile we apply compressive strain –Kr2/6 , to obtain a segment of a
sphere of radius 1/K,maximum tangential rotation or semi-cone angle sin-1(KR).Thus K
that characterizes bulging or warping of  a surfaces  is a matter of  changing hoop strain
in comparision to radial strain by large deformation  Von Kármán compatibility, which is
neglected in linear formulations.  This can be readily demonstrated on flexible
honeycomb core made by Hexcel  Company ,for example. Fig. (9), right pictures.

Flat metric ds2=dr2+(rdh)² is generalised to include circumferential strain ing to a doubly
curved shell metric in geodesic polar coördinates as (r→u)  ds2=du2+(udh)²(1+Kr2/3)
where now u is measured radially along the surface. Constant K axisymmetric meridians
of either sign are simply generated by d²r/ds²+Kr=0  depicting strain around each point.
([2],pp146-149)
6.2 Strip deformation by differential straining
When a long flat strip is twisted to form a helicoid or a part of sphere set, there is

nonlinear parabolic strain distribution across the width. Three types of straining are
possible. Let magnitude of strain at middle be εm Variation of strain εx=± (Ky2/2-εm),+
for helicoid, - for sphere set.. For helicoid straining, middle of strip (y=0) strain is –εm

compressive and at extreme fibers  at y=±(6εm/K)1/2=2εm  tensile. There is no longitudinal
strain εx at y=(2εm/K)1/2.ie Gaussian points. When sign of straining is reversed, i.e.,εx= -
(Ky2-εm ),we obtain a segment of a sphere set of constant positive  K0. When the flat strip
is strained linearly εx=Ey/R, K remains 0 as a developable surface, an annular ring
segment, as in Engineer’s Theory of Bending. Fig (9)



7.1  Stiffness and strength from stability   
Stability of structures includes strength. and stiffness. Applying above stable
construction, a computer model on NISA was generated using central pseudosphere
design to replace a glass fiber reinforced plastic 720kg. vibration fixture with steel of
same frequency , resulting in a design weight 175 kg.[7]. Using composites designed with
stability principles as above, it is possible to effect an order of magnitude weight savings.
We replace thick laminates by appropriately oriented reticulated beams for strength as
well as stiffness
Bending twisting are together handled in isometry in isometry .It can find application in
unsteady aerodynamics design to induce or suppress flutter of wings or FRP blades.
8.1 K inadequately recognized in design and analysis
Callidine [4], chapter 5,12 also refers to the relevance of  K during  inextensional
deformations without explicitly mentioning Gauss Theorem or First fundamental form.,
but implicitly though Gauss-Codazzi relations of  strain compatibility. He also decries the
lack of emphasis of  K , “ paradoxically, Gauss curvature is given little, if any, emphasis
in text books” in his textbook. The author of this paper is of the same opinion.  Another
pertinent comment by Den Hartog [5], page pp 319 relates to unexplained reduction in
stiffness in bending, but increased stiffness in torsion  of  pretwisted strips. “It is left as a
challenge to the reader, in a subject as a old fashioned as strength of materials, new
effects of considerable numerical importance  can still be discovered in the atomic age”
.Implicit in stability is loading, static equilibrium and appropriate geodesy. This author’s
belief is strengthened or rather stiffened  after investigations in isometry regarding its
importance and  long ignored rôle in structural stability and design.
9.0 STRUCTURAL ANALYSIS:
9.1 Loading
(a) Reticulated Pseudospherical Shell
A uniformly distributed compressive load is applied along the meridian of PS at its bigger
and smaller ends. The axial force (along the height of the shell) is considered as 1kN.
(b) Continuous Composite Pseudospherical Shell
 Load is applied through this skin  at the smaller end
9.2 Boundary Conditions
(a) Reticulated Pseudospherical Shell
A symmetric boundary condition is applied at both ends of the PS.
(b) Continuous Composite Pseudospherical Shell
All six degrees of freedom are constraint in the bigger end of the PS.
9.3 Material Properties
(a) Reticulated Pseudospherical Shells
     Material -Aluminum Alloy
     Young’s Modulus – 68.7MPa ,   Poission’s ratio =0.3 and Yield stress = 350 N/mm2

(b) Composite Continuous Pseudospherical Shell
     Material- M55J/M18  carbon/epoxy
     E11=  328.95GPa, E22=5.96GPa, G12=  4.41GPa, ν12= 0.346
9.4 Finite Element Model

An eight noded isoparametric quadrilateral shear flexible layered shell element is
used for continuos composite shell type PS while a three node beam element with six
degrees of freedom is used for reticulated type PS. It may be noted that PS synthesis



assumes infinitely small differential shell element length. However, in the finite element
modeling distance between two grids which is defined as strut length has been arrived at
based on Euler’s column buckling load to eliminate the local buckling. NISA structural
package was used for analysis.

Unlike the conventional continuous shell type structure, finite modeling of a reticulated
pseudospherical shells is not straight forward. Initially, for  central pseudosphere (3 = 1),
cuspidal radius  r0=100 mm. Polar co-ordinates  of the filament are ( r,θ, z). θ varies from
300 to 900 with an increment of 3.750, and a spiral path with seventeen grids are generated
using  Eqns   r  = ro . sech θ , z = ro. (θ - tanh θ ). Fibre angle -ψ symmetric to this is also
generated. A total of  96 spiral paths ; 48 each at a polar  angle interval of + 7.50 and –
7.50 respectively  are created around the circumferential direction based on the above two
basic paths. The netted paths are converted into three node beam elements with three
translations and three rotations. Thus the total number of elements  obtained are 1536.
In the case of continuous composite pseudospherical shell the nodes in the spiral paths
are connected to form quadrilateral element. Five models of reticulated PS with different
L/(R+r) aspect ratios and ranges of θ for PS segments are taken for the study. The details
of geometric parameters are shown in Table-2.
The PS segment is  generated by varying θ between π/6 to π. Minimum designs thickness
at ψ = 300 is 1 mm. Thickness variation found by static equilibrium is
9s Area cos y cos v =const,  Area=2πrt cos y ,v=y, sin y/r=const, t/t30 =
.3248/(cos3ψ.sinψ)

9.5 ANALYSIS RESULTS AND DISCUSSION
Deformed configurations of the five types of reticulated PS under static case is presented
in Fig.(10.) and the buckling mode shape of PS with θ varying from 300 to 1200 in
Fig.(11).
Initially a convergence of the finite element is established for the reticulated PS with the
medium mesh (with 1536 elements) and fine mesh (3072 elements). The net axial
deflections in mm for the medium and refined meshes are obtained as 0.043 and 0.0431
respectively. Similar values for the radial deflections are obtained as 0.0631 and 0.063.
The superimposed deformed configuration of the pseudospherical shells presented in
Fig.(10) for PS with various ratios of length to average diameter show that  PS  have
reduced both in axial and radial directions retaining the overall shape of the shell. From
the radial compression(deflection)given in Table-2, it can be observed that for the five
different PS considered in the present study, same radial compression exists at planes of
the same diameter. For instance, at a plane at locations B and C in this table, the radial
compression are found to be  0.0283mm and 0.0173mm even for two different PS with
θ=300 to 1200 and  300 to 1800 (model 2 and model 3). In general same radial
compression can be seen at plane which contain same diameter even though there is wide
variation of θ range used in configuring a PS segment the range of θ varies for PS is
different. Such a behavior is possible only when a pure membrane state of stress exists
with stability for this class of structure. This is also verified from the top and bottom fibre
stresses of the reticulated structure
The critical buckling stress in the PS is found to  increase from 508.2 N/mm2 to 1160.5
N/mm2 as the aspect ratio L/(R+r) increases from 0.48 to 4.46 contrary to what  one



would expect as an Euler column. The buckling load of PS is expected to be independent
of aspect ratio. This unconventional result of the PS can be  attributed to the typical
negative Gauss curvature and stable filament path by which it possesses a state of
membrane stress along its length. It can also be observed that a PS with θ =900 to 1800

and 1200 to 1800 have significant load bearing capabilities than a PS with θ =300 to 900 ,θ
=300 to 1200 and θ =300 to 1800. In a given PS whatever may be the curvature the stress
experienced by a given strut (length between two junctions) remains same. The entire
shell shortens like a short strut. It may be noted that the structure does not undergo any
local buckling as polar symmetry and similarity to unloaded structure are maintained in
the buckled mode. Because of this important  and characteristic nature of the reticulated
PS, the design of the same is independent of the overall size but depends upon local strut
length between nodes.The buckling mode is of a global character, without loss of local
similarity to original structure at any point .This important rigid mode is to be noted.

In the case of a composite continuous pseudospherical shell, the critical buckling
stress is obtained as 600 N/mm2 as against its unidirectional compressive strength of 720
N/mm2. The deformed configuration of the shell under static load is found be
geometrically similar to the original configuration as observed in the case of the
reticulated shells.

TABLE – 2   Displacements  and Critical Buckling Stresses in Reticulated
Pseudospherical Shell Segments

Model
No.

Polar
angleθ

Truncated
Shell
Size
(mm)

Aspect
ratio
L/(R+r)

θ values
at start,
middle,and
end of  PS
(in degrees)

Radial
displacements
at  corrosponding
locations
(in 0.1mm)

Critical
Stress
(N/mm2)

1. 300

to
900

L=  61
R=  88
r  = 40

0.48
30,90 0.631, 0.282

508.2

2. 300

to
1200

L=  108
R=    88
r  =   24

0.96
30,60,120 0.631,0.283,0.173

709.9

3. 300

to
1800

L=  210
R=    88
r =   8.6

2.18
30,90,120,18
0

0.631,0.283,
0.173,   0.061 739.3

4. 900

to
1800

L= 149
R=   40
r  = 8.6

3.07
90,120,180 0.283,0.173,0.061

927.0

5.
1200

to
1800

L=  102
R=   24
r =   8.6

4.46
120,180 0.173,      0.061

1160.5



CONCLUSIONS
Classical theory of isometric mapping or deformations has been interpreted and applied
for structural bending. A model in hyperbolic geometry using polar coordinates has been
constructed. Hyperbolic geodesics are given as essential buckling resisting stable
directions and are seen to agree with Egregium theorem as isometric bending invariant.
Generalized Mohr circles for depicting isometric bending deformations and  geometrical
direct and inverse isometry of two types are introduced in this paper. Importance of
Gauss curvature in large shell membrane strain is pointed out. .A pseudospherical shell
has been structurally  synthesized. This  has been demonstrated to proceed directly,
apparently without any bifurcation, to  compressive failure without buckling,
confirmatively established by finite element analysis.
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