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SUMMARY:  Many tests carried out on reinforced concrete structures prove that it is not possible to
obtain, with a linear calculation, a correct representation of constructions’ behaviour. Consequently,
developing numerical methods that takes into account different types of non linearity becomes a
necessity. The physical one which takes into account the non linearity of concrete behaviour and the
geometric one which concerns the overall structure behaviour. The calculation method described here is
used  to simulate ruin of slender structure made of reinforced concrete and proves that ruin occurs by
equilibrium divergence. In this method the structure overall stability is analysed, taking the deflexion
into account (second order theory) and considering non linear stress-strain relation of concrete. The
comparison of numerical results with experimental results has enabled us to test the used method and to
study the impact of various parameters  on the critical load computation.

KEYWORDS : Numerical simulation, Slender structures, Reinforced concrete, Non linearity,
Buckling.

INTRODUCTION

Reinforced concrete slender structures (hight bridges, piles, cable-stayed bridges pylons) must be
calculated using the second order analysis to verify their overall stability[1]. This type of non linear
computation is linked to the material nature[2]. We can support this claim by considering an inflected
section. It has a tensed part and a compressed part. If the stress exceeds the tensile strength in the
tensed part we consider that the concrete is cracked and thus the section inertia reduced[3]. Added to
this we consider non linear concrete behaviour with Young’s modulus varying with a progressive
loading. For statically determinate structures, there are calculation methods using simplifying hypothesis
about linear or sinusoidal deflexion to take these phenomena into account[4]. The general aim of this
work concerns the development of a numerical method which permits to treat automatically this type of
problem for statically determinate and indeterminate structures. A computation program of reinforced
concrete section is interfaced with an existing structure application program. It permits to simulate
slender structures comportment till the ruin by  exceeding the section resistance or by instability. The
non linear concrete behaviour  is represented by the non linear stress-strain relation parabola-rectangle.
This stress-strain relation is used by the French rules of the limit states calculation of reinforced



concrete. The response of  the structure is solved in small loading steps by a series of quasi-elastic
incremental analysis[5]. The exact solution is the limiting case of infinitely small steps. The study
presented in this paper concerns a reinforced concrete statically determinate column loaded by an axial
force. This type of structure is rarely perfect therefore an initial eccentricity of the load is taken into
account. The numerical simulation results consists to evaluate the critical load of the structure. The
results are confronted with experimental results published by the German Committee of Reinforced
Concrete[6]. Finally, an evaluation of the parameters’ influence on the critical load is done with the
geometrical slenderness, the eccentricity of the load, and the concrete compressive strength.

METHOD OF COMPUTATION

Equilibrium method of a reinforced concrete section

The section is subjected to plane bending. Plane sections conservation and small strains hypothesis are
used to modelize the section. Concrete behaviour is represented by the stress-strain relation parabola-
rectangle as shown in Fig. 1.

In this study, the non-linear analysis concerns axial force Next and bending moment Mext which are
applied to xOy plane. The axial strain for a typical point of the cross section is given by Eqn 1:

ε=δu+δω.y (1)

δu  is the average compressive strain, δω is the differential rotation and y is the ordinate of the typical
point of the cross section. The cross-section is a rectangle of concrete which is defined by its larger b
and height h and different steel reinforcements which are defined by their ordinate yi and their section
area Ai. Fig. 2 represents a reinforced concrete section subjected to plane bending.

Fig. 1 : Stress-strain relation parabola-rectangle
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Fig. 2 : reinforced concrete cross-section loaded in plane bending
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Internal forces in concrete are given by  Eqn 2 and Eqn 3 :

( ) ( )dyyby.uN
h cc δω+δσ= ∫ (2)

( ) ( )dyyyby.uM
h cc δω+δσ= ∫ (3)

Internal forces in reinforcement are given by  Eqn 4 and Eqn 5:
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Total internal forces in reinforced concrete cross-section are given by Eqn 6 and Eqn 7:

scint NNN += (6)

scint MMM += (7)

Let us consider that Φ is the operator which permits to have forces produced by given strain. This
relation is given by the Eqn 8 as follows:

( ) ( )
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M

u u
int

int
, ,δ δω δ δω= Φ (8)

Due to the behaviour of concrete (parabola-rectangle), the problem is non-linear therefore forces Nc

and Mc are non linear functions of (δu, δω). The principle is to approximate calculation by considering a
linear problem locally and by proceeding by increase of strains and by estimating tangentially operator
Φt . For this, we use an iterative method to compute strains. The principle of this method is shown in
Fig 3.

For given forces (Next, Mext) calculation is organised as follows :

Fig. 3 : Iterative calculation of non linear problem reduced to an only
   variable δu . Convergence towards an equilibrium state.
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-we start from a given strain (δu , δω ) ; it is generally given by linear elasticity by Eqn 9 and Eqn 10:

ES

N
u ext=δ (9)

EI

Mext=δω (10)

-we compute the internal forces (Nint, Mint) ;
-we calculate the tangential operator Φt  ;
-we evaluate the difference between the internal and the external forces ;
-the actual strain is given by  Eqn 11:
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Computations are stopped when (Nint, Mint) = (Next, Mext) .

Column stability

To study a statically determinate column we discretize it in n elements therefore in n cross-sections.
The principle is to analyse each cross-section equilibrium and to prove that there is stability of
equilibrium. This must be made with the two types of non linearity.The stability analysis is made with an
incremental loading. If the shear forces are neglected, the first order forces are axial force N0 and first
order bending moment (Mx)0. Due to column deflection (Fig. 4), the resultant forces takes a new
position xi. This position gives a new stress distribution including the second order effects calculated
with Eqn 12 and Eqn 13:

Ni = N0,    (Mx)i = (Mx)0  + N0.xi (12)

Ni+n = N0,    (Mx)i+n = (Mx)i+(n-1)  + N0.xi+n (13)

An iterative algorithm is established for computing the second order bending moment witch grows for
the same increment due to deflexion. Using successive iterations, the stability criterion is the
convergence of bending moment values towards finite values.

Initial state

(Mx)0

N0=P

(Mx)0

Deflected state

N0=P
xi

Fig. 4 : Second order effects on reinforced
concrete column



Analysis organisation

For a discretised column the analysis is made with a step by step loading. For every step the stability
analysis is organised as follows :
-computation of  the first order forces ;
-computation in each cross-section of the strains with the equilibrium method ;
-evaluation of the neutral axis, the inertia (tensed concrete is neglected), and the tangent young’s
modulus in each cross-section;
-computation of the second order forces and testing of the stability criterion.
This organisation is summarized by an organigram in Fig. 5.

Computation code and programming language

The first order calculations are made by a finite element code named Systus. It is used in various
domains and particularly in civil engineering. It gives a vast range of procedures witch permits to make

Fig. 5 : Organisation of a step computation
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many analyses in static or dynamic problems. The programming language SIL is integrated into the
code. It represents an interface language with the database.

VALIDATION OF THE USED METHOD

A series of statically determinate columns have been tested by Mehmel and his collaborators and results
have been published by the German Commitee of Reinforced Concrete[6]. We have used these tests to
valid the used method . The validation concerns columns that have one end restrained and one free end.
The column is loaded with an axial load P with an eccentricity eo. The  columns characteristics are
presented in the Table 1 and numerical results comparison with the experimental results is presented in
the Table 2. The  columns characteristics are :

− the section dimension h in the buckling plane;
− the section dimension b in the orthogonal buckling plane;
− the compressed reinforcement section A1;
− the tensed reinforcement section A2; 
− the distance d1 from  the most compressed section fibre to the reinforcement section A1;
− the distance d2 from  the most compressed section fibre to the reinforcement section A2;

Table 1: Columns characteristics

test l
cm

h
cm

b
cm

A1=A2

cm
d1

cm
d2

cm
fe

MPa
fc

MPa
e0

cm
1 450 20,3 25,2 3,12 3,2 17,1 480 35,3 9,7
2 450 15 25,3 2,36 2,5 12,3 510 42,3 7,3
3 340 15,6 25,2 2,38 2,6 12,5 510 41,9 7,6

Table 2: Numerical results comparison with the experimental results

test Pexp

MN
Pinf

MN
Psup

MN
1 0,260 0,250 0,264
2 0,138 0,120 0,140
3 0,180 0,170 0,190

The numerical calculation gives two values of load. The critical load value is between the last load
value for which the analysis converged (Pinf)  and the load value for which the analysis diverge (Psup).
According to Table 2 we can say that we obtain a good estimation of the experimental ruin load.



IMPACT OF VARIOUS PARAMETERS ON THE CRITICAL LOAD

After the method validation it is possible to study the impact of some parameters on the column critical
load Pc; geometrically slenderness, load eccentricity, compressive strength of concrete. The
characteristics column are l = 450 cm, h = 15 cm, b = 25,3 cm, A = A’ = 2,36 cm2, d = 12, 3 cm,
d’ = 2,5 cm.

Influence of geometrical slenderness

The evolution of reduced critical load Pc

cBf
 when the geometrical slenderness 

l
h
f  varies is shown in

Fig. 6 (B is the concrete section area). The column effective length is lf . Three distinct zones can be
observed on the curve. The first one corresponds to small slenderness values for which the critical load
does not vary much. In the second one we can see a great decrease in critical load ; for standard
lements whose slenderness values are between 15 and 25, 10% of slenderness variation entails the same
order  critical load variation. In the last zone the curve is stabilised for extensive geometrical
slenderness. In this case the critical loads are all the smaller as the columns are more slender.

Fig. 6: Critical load versus geometrical slenderness

Influence of  load eccentricity

Fig. 7 : critical load versus eccentricity
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The critical load Pc versus load eccentricity e0 is given in Fig. 7. We can observe two zones on the
curve. The first zone shows an important decrease of critical load values for small eccentricities; for
example between e0 = 1 cm and e0 = 2 cm we can note a 38% diminution in the critical load; this proves
that it is dangerous to neglect or  underestimate an initial eccentricity due to the structures’
imperfections in buckling calculation. The second zone proves that for high eccentricity values the
curve is stabilised; for very outlying loads it is logical that the column instability occur immediately.

Influence of concrete compressive strength

The evolution of critical load Pc when compressive strength of  concrete varies is shown on Fig. 8. The
critical load has a quasi linear increase versus compressive strength of concrete. This linearity can be
explained by the fact that the problem is resolved by a linear incremental analysis and that the Young’s
modulus is a linear function of compressive strength fc (E = kfc ; k is constant).

Fig. 8 : critical load versus compressive strength of concrete

Others parameters

Steel yield limit has no influence or almost no influence on the critical load calculation because stability
generally occurs when steel yield limit is not reached .
Finally, for two values of reinforcement position in the section d1 = 3,5 cm et d1 = 4,5 cm, we obtain
respectively the critical loads P = 0,16 MN et P = 0,14 MN. There is a 13% variation of the critical load
for a mistake of 1 cm on the reinforcement position. Therefore, it could be wise to increase the
reinforcement position d1 and d2 in critical load calculation.

CONCLUSION

The developed program permits to simulate the behaviour till ruin of reinforced concrete columns
loaded by axial force in the short term. Ruin can occur by exceeding the strength of the more solicited
section or by instability. This program can be considered like a tool of buckling verification in the case
of statically determinate structures. The problem is more complex when it is about statically
indeterminate structures because of forces redistribution due to the rigidity variation for incremental
loading. We are at present  studying this problem. The numerical results will be compared with results
obtained on experimental patterns. Moreover using other concrete strain-stress relation in the short
term will permit to provide more information about physical non linearity. Finally with the introduction
in the program of the concrete and steel long term behaviour, we will evaluate the impact of this
phenomenon on the stability of concrete structures.
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